
Chapter 6

Dynamic Programming

We began our study of algorithmic techniques with greedy algorithms, which

in some sense form the most natural approach to algorithm design. Faced with

a new computational problem, we’ve seen that it’s not hard to propose multiple

possible greedy algorithms; the challenge is then to determine whether any of

these algorithms provides a correct solution to the problem in all cases.

The problems we saw in Chapter 4 were all unified by the fact that, in the

end, there really was a greedy algorithm that worked. Unfortunately, this is far

from being true in general; for most of the problems that one encounters, the

real difficulty is not in determining which of several greedy strategies is the

right one, but in the fact that there is no natural greedy algorithm that works.

For such problems, it is important to have other approaches at hand. Divide

and conquer can sometimes serve as an alternative approach, but the versions

of divide and conquer that we saw in the previous chapter are often not strong

enough to reduce exponential brute-force search down to polynomial time.

Rather, as we noted in Chapter 5, the applications there tended to reduce a

running time that was unnecessarily large, but already polynomial, down to a

faster running time.

We now turn to a more powerful and subtle design technique, dynamic

programming. It will be easier to say exactly what characterizes dynamic pro-

gramming after we’ve seen it in action, but the basic idea is drawn from the

intuition behind divide and conquer and is essentially the opposite of the

greedy strategy: one implicitly explores the space of all possible solutions, by

carefully decomposing things into a series of subproblems, and then build-

ing up correct solutions to larger and larger subproblems. In a way, we can

thus view dynamic programming as operating dangerously close to the edge of

252 Chapter 6 Dynamic Programming

brute-force search: although it’s systematically working through the exponen-

tially large set of possible solutions to the problem, it does this without ever

examining them all explicitly. It is because of this careful balancing act that

dynamic programming can be a tricky technique to get used to; it typically

takes a reasonable amount of practice before one is fully comfortable with it.

With this in mind, we now turn to a first example of dynamic program-

ming: the Weighted Interval Scheduling Problem that we defined back in

Section 1.2. We are going to develop a dynamic programming algorithm for

this problem in two stages: first as a recursive procedure that closely resembles

brute-force search; and then, by reinterpreting this procedure, as an iterative

algorithm that works by building up solutions to larger and larger subproblems.

6.1 Weighted Interval Scheduling:
A Recursive Procedure

We have seen that a particular greedy algorithm produces an optimal solution

to the Interval Scheduling Problem, where the goal is to accept as large a

set of nonoverlapping intervals as possible. The Weighted Interval Scheduling

Problem is a strictly more general version, in which each interval has a certain

value (or weight), and we want to accept a set of maximum value.

Designing a Recursive Algorithm

Since the original Interval Scheduling Problem is simply the special case in

which all values are equal to 1, we know already that most greedy algorithms

will not solve this problem optimally. But even the algorithm that worked

before (repeatedly choosing the interval that ends earliest) is no longer optimal

in this more general setting, as the simple example in Figure 6.1 shows.

Indeed, no natural greedy algorithm is known for this problem, which is

what motivates our switch to dynamic programming. As discussed above, we

will begin our introduction to dynamic programming with a recursive type of

algorithm for this problem, and then in the next section we’ll move to a more

iterative method that is closer to the style we use in the rest of this chapter.

Index

1

2

3

Value = 1

Value = 3

Value = 1

Figure 6.1 A simple instance of weighted interval scheduling.

6.1 Weighted Interval Scheduling: A Recursive Procedure 253

We use the notation from our discussion of Interval Scheduling in Sec-

tion 1.2. We have n requests labeled 1, . . . , n, with each request i specifying a

start time si and a finish time fi. Each interval i now also has a value, or weight

vi. Two intervals are compatible if they do not overlap. The goal of our current

problem is to select a subset S ⊆ {1, . . . , n} of mutually compatible intervals,

so as to maximize the sum of the values of the selected intervals,
∑

i∈S vi.

Let’s suppose that the requests are sorted in order of nondecreasing finish

time: f1 ≤ f2 ≤ . . . ≤ fn. We’ll say a request i comes before a request j if i < j.

This will be the natural left-to-right order in which we’ll consider intervals.

To help in talking about this order, we define p(j), for an interval j, to be the

largest index i < j such that intervals i and j are disjoint. In other words, i

is the leftmost interval that ends before j begins. We define p(j) = 0 if no

request i < j is disjoint from j. An example of the definition of p(j) is shown

in Figure 6.2.

Now, given an instance of the Weighted Interval Scheduling Problem, let’s

consider an optimal solution O, ignoring for now that we have no idea what

it is. Here’s something completely obvious that we can say about O: either

interval n (the last one) belongs to O, or it doesn’t. Suppose we explore both

sides of this dichotomy a little further. If n ∈ O, then clearly no interval indexed

strictly between p(n) and n can belong to O, because by the definition of p(n),

we know that intervals p(n) + 1, p(n) + 2, . . . , n − 1 all overlap interval n.

Moreover, if n ∈ O, then O must include an optimal solution to the problem

consisting of requests {1, . . . , p(n)}—for if it didn’t, we could replace O’s

choice of requests from {1, . . . , p(n)} with a better one, with no danger of

overlapping request n.

Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

v1 = 2

v3 = 4

v2 = 4

v5 = 2

v6 = 1

v4 = 7

Figure 6.2 An instance of weighted interval scheduling with the functions p(j) defined

for each interval j.

254 Chapter 6 Dynamic Programming

On the other hand, if n �∈ O, then O is simply equal to the optimal solution

to the problem consisting of requests {1, . . . , n − 1}. This is by completely

analogous reasoning: we’re assuming that O does not include request n; so if

it does not choose the optimal set of requests from {1, . . . , n − 1}, we could

replace it with a better one.

All this suggests that finding the optimal solution on intervals {1, 2, . . . , n}

involves looking at the optimal solutions of smaller problems of the form

{1, 2, . . . , j}. Thus, for any value of j between 1and n, let Oj denote the optimal

solution to the problem consisting of requests {1, . . . , j}, and let OPT(j) denote

the value of this solution. (We define OPT(0) = 0, based on the convention

that this is the optimum over an empty set of intervals.) The optimal solution

we’re seeking is precisely On, with value OPT(n). For the optimal solution Oj

on {1, 2, . . . , j}, our reasoning above (generalizing from the case in which

j = n) says that either j ∈ Oj, in which case OPT(j) = vj + OPT(p(j)), or j �∈ Oj,

in which case OPT(j) = OPT(j − 1). Since these are precisely the two possible

choices (j ∈ Oj or j �∈ Oj), we can further say that

(6.1) OPT(j) = max(vj + OPT(p(j)), OPT(j − 1)).

And how do we decide whether n belongs to the optimal solution Oj? This

too is easy: it belongs to the optimal solution if and only if the first of the

options above is at least as good as the second; in other words,

(6.2) Request j belongs to an optimal solution on the set {1, 2, . . . , j} if and

only if

vj + OPT(p(j)) ≥ OPT(j − 1).

These facts form the first crucial component on which a dynamic pro-

gramming solution is based: a recurrence equation that expresses the optimal

solution (or its value) in terms of the optimal solutions to smaller subproblems.

Despite the simple reasoning that led to this point, (6.1) is already a

significant development. It directly gives us a recursive algorithm to compute

OPT(n), assuming that we have already sorted the requests by finishing time

and computed the values of p(j) for each j.

Compute-Opt(j)

If j = 0 then

Return 0

Else

Return max(vj+Compute-Opt(p(j)), Compute-Opt(j − 1))

Endif

6.1 Weighted Interval Scheduling: A Recursive Procedure 255

The correctness of the algorithm follows directly by induction on j:

(6.3) Compute-Opt(j) correctly computes OPT(j) for each j = 1, 2, . . . , n.

Proof. By definition OPT(0) = 0. Now, take some j > 0, and suppose by way

of induction that Compute-Opt(i) correctly computes OPT(i) for all i < j. By

the induction hypothesis, we know that Compute-Opt(p(j)) = OPT(p(j)) and

Compute-Opt(j − 1) = OPT(j − 1); and hence from (6.1) it follows that

OPT(j) = max(vj + Compute-Opt(p(j)), Compute-Opt(j − 1))

= Compute-Opt(j).

Unfortunately, if we really implemented the algorithm Compute-Opt as

just written, it would take exponential time to run in the worst case. For

example, see Figure 6.3 for the tree of calls issued for the instance of Figure 6.2:

the tree widens very quickly due to the recursive branching. To take a more

extreme example, on a nicely layered instance like the one in Figure 6.4, where

p(j) = j − 2 for each j = 2, 3, 4, . . . , n, we see that Compute-Opt(j) generates

separate recursive calls on problems of sizes j − 1 and j − 2. In other words,

the total number of calls made to Compute-Opt on this instance will grow

OPT(6)

OPT(5)

OPT(4) OPT(3)

OPT(1)OPT(2)

OPT(2)

OPT(2) OPT(1)

OPT(1)

OPT(1)

OPT(3)

OPT(1)

OPT(3)

OPT(1)

The tree of subproblems

grows very quickly.

Figure 6.3 The tree of subproblems called by Compute-Opt on the problem instance

of Figure 6.2.

256 Chapter 6 Dynamic Programming

Figure 6.4 An instance of weighted interval scheduling on which the simple Compute-
Opt recursion will take exponential time. The values of all intervals in this instance

are 1.

like the Fibonacci numbers, which increase exponentially. Thus we have not

achieved a polynomial-time solution.

Memoizing the Recursion

In fact, though, we’re not so far from having a polynomial-time algorithm.

A fundamental observation, which forms the second crucial component of a

dynamic programming solution, is that our recursive algorithm Compute-

Opt is really only solving n + 1 different subproblems: Compute-Opt(0),

Compute-Opt(1), . . . , Compute-Opt(n). The fact that it runs in exponential

time as written is simply due to the spectacular redundancy in the number of

times it issues each of these calls.

How could we eliminate all this redundancy? We could store the value of

Compute-Opt in a globally accessible place the first time we compute it and

then simply use this precomputed value in place of all future recursive calls.

This technique of saving values that have already been computed is referred

to as memoization.

We implement the above strategy in the more “intelligent” procedure M-

Compute-Opt. This procedure will make use of an array M[0 . . . n]; M[j] will

start with the value “empty,” but will hold the value of Compute-Opt(j) as

soon as it is first determined. To determine OPT(n), we invoke M-Compute-

Opt(n).

M-Compute-Opt(j)

If j = 0 then

Return 0

Else if M[j] is not empty then

Return M[j]

Else

6.1 Weighted Interval Scheduling: A Recursive Procedure 257

Define M[j] = max(vj+M-Compute-Opt(p(j)), M-Compute-Opt(j − 1))

Return M[j]

Endif

Analyzing the Memoized Version

Clearly, this looks very similar to our previous implementation of the algo-

rithm; however, memoization has brought the running time way down.

(6.4) The running time of M-Compute-Opt(n) is O(n) (assuming the input

intervals are sorted by their finish times).

Proof. The time spent in a single call to M-Compute-Opt is O(1), excluding the

time spent in recursive calls it generates. So the running time is bounded by a

constant times the number of calls ever issued to M-Compute-Opt. Since the

implementation itself gives no explicit upper bound on this number of calls,

we try to find a bound by looking for a good measure of “progress.”

The most useful progress measure here is the number of entries in M that

are not “empty.” Initially this number is 0; but each time the procedure invokes

the recurrence, issuing two recursive calls to M-Compute-Opt, it fills in a new

entry, and hence increases the number of filled-in entries by 1. Since M has

only n + 1entries, it follows that there can be at most O(n) calls to M-Compute-

Opt, and hence the running time of M-Compute-Opt(n) is O(n), as desired.

Computing a Solution in Addition to Its Value

So far we have simply computed the value of an optimal solution; presumably

we want a full optimal set of intervals as well. It would be easy to extend

M-Compute-Opt so as to keep track of an optimal solution in addition to its

value: we could maintain an additional array S so that S[i] contains an optimal

set of intervals among {1, 2, . . . , i}. Naively enhancing the code to maintain

the solutions in the array S, however, would blow up the running time by an

additional factor of O(n): while a position in the M array can be updated in

O(1) time, writing down a set in the S array takes O(n) time. We can avoid

this O(n) blow-up by not explicitly maintaining S, but rather by recovering the

optimal solution from values saved in the array M after the optimum value

has been computed.

We know from (6.2) that j belongs to an optimal solution for the set

of intervals {1, . . . , j} if and only if vj + OPT(p(j)) ≥ OPT(j − 1). Using this

observation, we get the following simple procedure, which “traces back”

through the array M to find the set of intervals in an optimal solution.

258 Chapter 6 Dynamic Programming

Find-Solution(j)

If j = 0 then

Output nothing

Else

If vj + M[p(j)]≥ M[j − 1] then

Output j together with the result of Find-Solution(p(j))

Else

Output the result of Find-Solution(j − 1)

Endif

Endif

Since Find-Solution calls itself recursively only on strictly smaller val-

ues, it makes a total of O(n) recursive calls; and since it spends constant time

per call, we have

(6.5) Given the array M of the optimal values of the sub-problems, Find-

Solution returns an optimal solution in O(n) time.

6.2 Principles of Dynamic Programming:
Memoization or Iteration over Subproblems

We now use the algorithm for the Weighted Interval Scheduling Problem

developed in the previous section to summarize the basic principles of dynamic

programming, and also to offer a different perspective that will be fundamental

to the rest of the chapter: iterating over subproblems, rather than computing

solutions recursively.

In the previous section, we developed a polynomial-time solution to the

Weighted Interval Scheduling Problem by first designing an exponential-time

recursive algorithm and then converting it (by memoization) to an efficient

recursive algorithm that consulted a global array M of optimal solutions to

subproblems. To really understand what is going on here, however, it helps

to formulate an essentially equivalent version of the algorithm. It is this new

formulation that most explicitly captures the essence of the dynamic program-

ming technique, and it will serve as a general template for the algorithms we

develop in later sections.

Designing the Algorithm

The key to the efficient algorithm is really the array M. It encodes the notion

that we are using the value of optimal solutions to the subproblems on intervals

{1, 2, . . . , j} for each j, and it uses (6.1) to define the value of M[j] based on

6.2 Principles of Dynamic Programming 259

values that come earlier in the array. Once we have the array M, the problem

is solved: M[n] contains the value of the optimal solution on the full instance,

and Find-Solution can be used to trace back through M efficiently and return

an optimal solution itself.

The point to realize, then, is that we can directly compute the entries in

M by an iterative algorithm, rather than using memoized recursion. We just

start with M[0]= 0 and keep incrementing j; each time we need to determine

a value M[j], the answer is provided by (6.1). The algorithm looks as follows.

Iterative-Compute-Opt

M[0]= 0

For j = 1, 2, . . . , n

M[j]= max(vj + M[p(j)], M[j − 1])

Endfor

Analyzing the Algorithm

By exact analogy with the proof of (6.3), we can prove by induction on j that

this algorithm writes OPT(j) in array entry M[j]; (6.1) provides the induction

step. Also, as before, we can pass the filled-in array M to Find-Solution to

get an optimal solution in addition to the value. Finally, the running time

of Iterative-Compute-Opt is clearly O(n), since it explicitly runs for n

iterations and spends constant time in each.

An example of the execution of Iterative-Compute-Opt is depicted in

Figure 6.5. In each iteration, the algorithm fills in one additional entry of the

array M, by comparing the value of vj + M[p(j)] to the value of M[j − 1].

A Basic Outline of Dynamic Programming

This, then, provides a second efficient algorithm to solve the Weighted In-

terval Scheduling Problem. The two approaches clearly have a great deal of

conceptual overlap, since they both grow from the insight contained in the

recurrence (6.1). For the remainder of the chapter, we will develop dynamic

programming algorithms using the second type of approach—iterative build-

ing up of subproblems—because the algorithms are often simpler to express

this way. But in each case that we consider, there is an equivalent way to

formulate the algorithm as a memoized recursion.

Most crucially, the bulk of our discussion about the particular problem of

selecting intervals can be cast more generally as a rough template for designing

dynamic programming algorithms. To set about developing an algorithm based

on dynamic programming, one needs a collection of subproblems derived from

the original problem that satisfies a few basic properties.

260 Chapter 6 Dynamic Programming

Index

1

2

3

4

5

6

p(1) = 0

p(2) = 0

p(3) = 1

p(4) = 0

p(5) = 3

p(6) = 3

w1 = 2

w2 = 4

w3 = 4

w4 = 7

w5 = 2

w6 = 1

20

0 1 2 3 4 5 6

M =

20 4

20 4 6

20 4 6 7

20 4 6 7 8

20 4 6 7 8 8

(a) (b)

Figure 6.5 Part (b) shows the iterations of Iterative-Compute-Opt on the sample

instance of Weighted Interval Scheduling depicted in part (a).

(i) There are only a polynomial number of subproblems.

(ii) The solution to the original problem can be easily computed from the

solutions to the subproblems. (For example, the original problem may

actually be one of the subproblems.)

(iii) There is a natural ordering on subproblems from “smallest” to “largest,”

together with an easy-to-compute recurrence (as in (6.1) and (6.2)) that

allows one to determine the solution to a subproblem from the solutions

to some number of smaller subproblems.

Naturally, these are informal guidelines. In particular, the notion of “smaller”

in part (iii) will depend on the type of recurrence one has.

We will see that it is sometimes easier to start the process of designing

such an algorithm by formulating a set of subproblems that looks natural, and

then figuring out a recurrence that links them together; but often (as happened

in the case of weighted interval scheduling), it can be useful to first define a

recurrence by reasoning about the structure of an optimal solution, and then

determine which subproblems will be necessary to unwind the recurrence.

This chicken-and-egg relationship between subproblems and recurrences is a

subtle issue underlying dynamic programming. It’s never clear that a collection

of subproblems will be useful until one finds a recurrence linking them

together; but it can be difficult to think about recurrences in the absence of

the “smaller” subproblems that they build on. In subsequent sections, we will

develop further practice in managing this design trade-off.

6.3 Segmented Least Squares: Multi-way Choices 261

6.3 Segmented Least Squares: Multi-way Choices
We now discuss a different type of problem, which illustrates a slightly

more complicated style of dynamic programming. In the previous section,

we developed a recurrence based on a fundamentally binary choice: either

the interval n belonged to an optimal solution or it didn’t. In the problem

we consider here, the recurrence will involve what might be called “multi-

way choices”: at each step, we have a polynomial number of possibilities to

consider for the structure of the optimal solution. As we’ll see, the dynamic

programming approach adapts to this more general situation very naturally.

As a separate issue, the problem developed in this section is also a nice

illustration of how a clean algorithmic definition can formalize a notion that

initially seems too fuzzy and nonintuitive to work with mathematically.

The Problem

Often when looking at scientific or statistical data, plotted on a two-

dimensional set of axes, one tries to pass a “line of best fit” through the

data, as in Figure 6.6.

This is a foundational problem in statistics and numerical analysis, formu-

lated as follows. Suppose our data consists of a set P of n points in the plane,

denoted (x1, y1), (x2, y2), . . . , (xn, yn); and suppose x1 < x2 < . . . < xn. Given

a line L defined by the equation y = ax + b, we say that the error of L with

respect to P is the sum of its squared “distances” to the points in P:

Error(L, P) =

n
∑

i=1

(yi − axi − b)2.

Figure 6.6 A “line of best fit.”

262 Chapter 6 Dynamic Programming

Figure 6.7 A set of points that lie approximately on two lines.

A natural goal is then to find the line with minimum error; this turns out to

have a nice closed-form solution that can be easily derived using calculus.

Skipping the derivation here, we simply state the result: The line of minimum

error is y = ax + b, where

a =
n

∑

i xiyi −
(
∑

i xi

) (
∑

i yi

)

n
∑

i x2
i −

(
∑

i xi

)2
and b =

∑

i yi − a
∑

i xi

n
.

Now, here’s a kind of issue that these formulas weren’t designed to cover.

Often we have data that looks something like the picture in Figure 6.7. In this

case, we’d like to make a statement like: “The points lie roughly on a sequence

of two lines.” How could we formalize this concept?

Essentially, any single line through the points in the figure would have a

terrible error; but if we use two lines, we could achieve quite a small error. So

we could try formulating a new problem as follows: Rather than seek a single

line of best fit, we are allowed to pass an arbitrary set of lines through the

points, and we seek a set of lines that minimizes the error. But this fails as a

good problem formulation, because it has a trivial solution: if we’re allowed

to fit the points with an arbitrarily large set of lines, we could fit the points

perfectly by having a different line pass through each pair of consecutive points

in P.

At the other extreme, we could try “hard-coding” the number two into the

problem; we could seek the best fit using at most two lines. But this too misses

a crucial feature of our intuition: We didn’t start out with a preconceived idea

that the points lay approximately on two lines; we concluded that from looking

at the picture. For example, most people would say that the points in Figure 6.8

lie approximately on three lines.

6.3 Segmented Least Squares: Multi-way Choices 263

Figure 6.8 A set of points that lie approximately on three lines.

Thus, intuitively, we need a problem formulation that requires us to fit

the points well, using as few lines as possible. We now formulate a problem—

the Segmented Least Squares Problem—that captures these issues quite cleanly.

The problem is a fundamental instance of an issue in data mining and statistics

known as change detection: Given a sequence of data points, we want to

identify a few points in the sequence at which a discrete change occurs (in

this case, a change from one linear approximation to another).

Formulating the Problem As in the discussion above, we are given a set of

points P = {(x1, y1), (x2, y2), . . . , (xn, yn)}, with x1 < x2 < . . . < xn. We will use

pi to denote the point (xi, yi). We must first partition P into some number

of segments. Each segment is a subset of P that represents a contiguous set

of x-coordinates; that is, it is a subset of the form {pi, pi+1, . . . , pj−1, pj} for

some indices i ≤ j. Then, for each segment S in our partition of P, we compute

the line minimizing the error with respect to the points in S, according to the

formulas above.

The penalty of a partition is defined to be a sum of the following terms.

(i) The number of segments into which we partition P, times a fixed, given

multiplier C > 0.

(ii) For each segment, the error value of the optimal line through that

segment.

Our goal in the Segmented Least Squares Problem is to find a partition of

minimum penalty. This minimization captures the trade-offs we discussed

earlier. We are allowed to consider partitions into any number of segments; as

we increase the number of segments, we reduce the penalty terms in part (ii) of

the definition, but we increase the term in part (i). (The multiplier C is provided

264 Chapter 6 Dynamic Programming

with the input, and by tuning C, we can penalize the use of additional lines

to a greater or lesser extent.)

There are exponentially many possible partitions of P, and initially it is not

clear that we should be able to find the optimal one efficiently. We now show

how to use dynamic programming to find a partition of minimum penalty in

time polynomial in n.

Designing the Algorithm

To begin with, we should recall the ingredients we need for a dynamic program-

ming algorithm, as outlined at the end of Section 6.2.We want a polynomial

number of subproblems, the solutions of which should yield a solution to the

original problem; and we should be able to build up solutions to these subprob-

lems using a recurrence. As with the Weighted Interval Scheduling Problem,

it helps to think about some simple properties of the optimal solution. Note,

however, that there is not really a direct analogy to weighted interval sched-

uling: there we were looking for a subset of n objects, whereas here we are

seeking to partition n objects.

For segmented least squares, the following observation is very useful:

The last point pn belongs to a single segment in the optimal partition, and

that segment begins at some earlier point pi. This is the type of observation

that can suggest the right set of subproblems: if we knew the identity of the

last segment pi, . . . , pn (see Figure 6.9), then we could remove those points

from consideration and recursively solve the problem on the remaining points

p1, . . . , pi−1.

OPT(i – 1) i
n

Figure 6.9 A possible solution: a single line segment fits points pi, pi+1, . . . , pn, and then

an optimal solution is found for the remaining points p1, p2, . . . , pi−1.

6.3 Segmented Least Squares: Multi-way Choices 265

Suppose we let OPT(i) denote the optimum solution for the points

p1, . . . , pi, and we let ei, j denote the minimum error of any line with re-

spect to pi, pi+1, . . . , pj. (We will write OPT(0) = 0 as a boundary case.) Then

our observation above says the following.

(6.6) If the last segment of the optimal partition is pi, . . . , pn, then the value

of the optimal solution is OPT(n) = ei,n + C + OPT(i − 1).

Using the same observation for the subproblem consisting of the points

p1, . . . , pj, we see that to get OPT(j) we should find the best way to produce a

final segment pi, . . . , pj—paying the error plus an additive C for this segment—

together with an optimal solution OPT(i − 1) for the remaining points. In other

words, we have justified the following recurrence.

(6.7) For the subproblem on the points p1, . . . , pj,

OPT(j) = min
1≤i≤j

(ei,j + C + OPT(i − 1)),

and the segment pi, . . . , pj is used in an optimum solution for the subproblem

if and only if the minimum is obtained using index i.

The hard part in designing the algorithm is now behind us. From here, we

simply build up the solutions OPT(i) in order of increasing i.

Segmented-Least-Squares(n)

Array M[0 . . . n]

Set M[0]= 0

For all pairs i ≤ j

Compute the least squares error ei, j for the segment pi , . . . , pj

Endfor

For j = 1, 2, . . . , n

Use the recurrence (6.7) to compute M[j]

Endfor

Return M[n]

By analogy with the arguments for weighted interval scheduling, the

correctness of this algorithm can be proved directly by induction, with (6.7)

providing the induction step.

And as in our algorithm for weighted interval scheduling, we can trace

back through the array M to compute an optimum partition.

266 Chapter 6 Dynamic Programming

Find-Segments(j)

If j = 0 then

Output nothing

Else

Find an i that minimizes ei, j + C + M[i − 1]

Output the segment {pi , . . . , pj} and the result of

Find-Segments(i − 1)

Endif

Analyzing the Algorithm

Finally, we consider the running time of Segmented-Least-Squares. First

we need to compute the values of all the least-squares errors ei, j. To perform

a simple accounting of the running time for this, we note that there are O(n2)

pairs (i, j) for which this computation is needed; and for each pair (i, j), we

can use the formula given at the beginning of this section to compute ei, j in

O(n) time. Thus the total running time to compute all ei, j values is O(n3).

Following this, the algorithm has n iterations, for values j = 1, . . . , n. For

each value of j, we have to determine the minimum in the recurrence (6.7) to

fill in the array entry M[j]; this takes time O(n) for each j, for a total of O(n2).

Thus the running time is O(n2) once all the ei, j values have been determined.1

6.4 Subset Sums and Knapsacks: Adding a Variable
We’re seeing more and more that issues in scheduling provide a rich source of

practically motivated algorithmic problems. So far we’ve considered problems

in which requests are specified by a given interval of time on a resource, as

well as problems in which requests have a duration and a deadline but do not

mandate a particular interval during which they need to be done.

In this section, we consider a version of the second type of problem,

with durations and deadlines, which is difficult to solve directly using the

techniques we’ve seen so far. We will use dynamic programming to solve the

problem, but with a twist: the “obvious” set of subproblems will turn out not

to be enough, and so we end up creating a richer collection of subproblems. As

1 In this analysis, the running time is dominated by the O(n3) needed to compute all ei, j values. But,

in fact, it is possible to compute all these values in O(n2) time, which brings the running time of the

full algorithm down to O(n2). The idea, whose details we will leave as an exercise for the reader, is to

first compute ei, j for all pairs (i, j) where j − i = 1, then for all pairs where j − i = 2, then j − i = 3, and

so forth. This way, when we get to a particular ei, j value, we can use the ingredients of the calculation

for ei, j−1 to determine ei, j in constant time.

6.4 Subset Sums and Knapsacks: Adding a Variable 267

we will see, this is done by adding a new variable to the recurrence underlying

the dynamic program.

The Problem

In the scheduling problem we consider here, we have a single machine that

can process jobs, and we have a set of requests {1, 2, . . . , n}. We are only

able to use this resource for the period between time 0 and time W, for some

number W. Each request corresponds to a job that requires time wi to process.

If our goal is to process jobs so as to keep the machine as busy as possible up

to the “cut-off” W, which jobs should we choose?

More formally, we are given n items {1, . . . , n}, and each has a given

nonnegative weight wi (for i = 1, . . . , n). We are also given a bound W. We

would like to select a subset S of the items so that
∑

i∈S wi ≤ W and, subject

to this restriction,
∑

i∈S wi is as large as possible. We will call this the Subset

Sum Problem.

This problem is a natural special case of a more general problem called the

Knapsack Problem, where each request i has both a value vi and a weight wi.

The goal in this more general problem is to select a subset of maximum total

value, subject to the restriction that its total weight not exceed W. Knapsack

problems often show up as subproblems in other, more complex problems. The

name knapsack refers to the problem of filling a knapsack of capacity W as

full as possible (or packing in as much value as possible), using a subset of the

items {1, . . . , n}. We will use weight or time when referring to the quantities

wi and W.

Since this resembles other scheduling problems we’ve seen before, it’s

natural to ask whether a greedy algorithm can find the optimal solution. It

appears that the answer is no—at least, no efficient greedy rule is known that

always constructs an optimal solution. One natural greedy approach to try

would be to sort the items by decreasing weight—or at least to do this for all

items of weight at most W—and then start selecting items in this order as long

as the total weight remains below W. But if W is a multiple of 2, and we have

three items with weights {W/2 + 1, W/2, W/2}, then we see that this greedy

algorithm will not produce the optimal solution. Alternately, we could sort by

increasing weight and then do the same thing; but this fails on inputs like

{1, W/2, W/2}.

The goal of this section is to show how to use dynamic programming to

solve this problem. Recall the main principles of dynamic programming: We

have to come up with a small number of subproblems so that each subproblem

can be solved easily from “smaller” subproblems, and the solution to the

original problem can be obtained easily once we know the solutions to all

268 Chapter 6 Dynamic Programming

the subproblems. The tricky issue here lies in figuring out a good set of

subproblems.

Designing the Algorithm

A False Start One general strategy, which worked for us in the case of

Weighted Interval Scheduling, is to consider subproblems involving only the

first i requests. We start by trying this strategy here. We use the notation

OPT(i), analogously to the notation used before, to denote the best possible

solution using a subset of the requests {1, . . . , i}. The key to our method for

the Weighted Interval Scheduling Problem was to concentrate on an optimal

solution O to our problem and consider two cases, depending on whether or

not the last request n is accepted or rejected by this optimum solution. Just

as in that case, we have the first part, which follows immediately from the

definition of OPT(i).

. If n �∈ O, then OPT(n) = OPT(n − 1).

Next we have to consider the case in which n ∈ O. What we’d like here

is a simple recursion, which tells us the best possible value we can get for

solutions that contain the last request n. For Weighted Interval Scheduling

this was easy, as we could simply delete each request that conflicted with

request n. In the current problem, this is not so simple. Accepting request n

does not immediately imply that we have to reject any other request. Instead,

it means that for the subset of requests S ⊆ {1, . . . , n − 1} that we will accept,

we have less available weight left: a weight of wn is used on the accepted

request n, and we only have W − wn weight left for the set S of remaining

requests that we accept. See Figure 6.10.

A Better Solution This suggests that we need more subproblems: To find out

the value for OPT(n) we not only need the value of OPT(n − 1), but we also need

to know the best solution we can get using a subset of the first n − 1 items

and total allowed weight W − wn. We are therefore going to use many more

subproblems: one for each initial set {1, . . . , i} of the items, and each possible

W

wn

Figure 6.10 After item n is included in the solution, a weight of wn is used up and there

is W − wn available weight left.

6.4 Subset Sums and Knapsacks: Adding a Variable 269

value for the remaining available weight w. Assume that W is an integer, and

all requests i = 1, . . . , n have integer weights wi. We will have a subproblem

for each i = 0, 1, . . . , n and each integer 0 ≤ w ≤ W. We will use OPT(i, w) to

denote the value of the optimal solution using a subset of the items {1, . . . , i}

with maximum allowed weight w, that is,

OPT(i, w) = max
S

∑

j∈S

wj ,

where the maximum is over subsets S ⊆ {1, . . . , i} that satisfy
∑

j∈S wj ≤ w.

Using this new set of subproblems, we will be able to express the value

OPT(i, w) as a simple expression in terms of values from smaller problems.

Moreover, OPT(n, W) is the quantity we’re looking for in the end. As before,

let O denote an optimum solution for the original problem.

. If n �∈ O, then OPT(n, W) = OPT(n − 1, W), since we can simply ignore

item n.

. If n ∈ O, then OPT(n, W) = wn + OPT(n − 1, W − wn), since we now seek

to use the remaining capacity of W − wn in an optimal way across items

1, 2, . . . , n − 1.

When the nth item is too big, that is, W < wn, then we must have OPT(n, W) =

OPT(n − 1, W). Otherwise, we get the optimum solution allowing all n requests

by taking the better of these two options. Using the same line of argument for

the subproblem for items {1, . . . , i}, and maximum allowed weight w, gives

us the following recurrence.

(6.8) If w < wi then OPT(i, w) = OPT(i − 1, w). Otherwise

OPT(i, w) = max(OPT(i − 1, w), wi + OPT(i − 1, w − wi)).

As before, we want to design an algorithm that builds up a table of all

OPT(i, w) values while computing each of them at most once.

Subset-Sum(n, W)

Array M[0 . . . n, 0 . . . W]

Initialize M[0, w]= 0 for each w = 0, 1, . . . , W

For i = 1, 2, . . . , n

For w = 0, . . . , W

Use the recurrence (6.8) to compute M[i, w]

Endfor

Endfor

Return M[n, W]

270 Chapter 6 Dynamic Programming

0

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

n

i

i – 1

2

1

0

0 1 2 w–wi w W

Figure 6.11 The two-dimensional table of OPT values. The leftmost column and bottom

row is always 0. The entry for OPT(i, w) is computed from the two other entries

OPT(i − 1, w) and OPT(i − 1, w − wi), as indicated by the arrows.

Using (6.8) one can immediately prove by induction that the returned

value M[n, W] is the optimum solution value for the requests 1, . . . , n and

available weight W.

Analyzing the Algorithm

Recall the tabular picture we considered in Figure 6.5, associated with

weighted interval scheduling, where we also showed the way in which the ar-

ray M for that algorithm was iteratively filled in. For the algorithm we’ve

just designed, we can use a similar representation, but we need a two-

dimensional table, reflecting the two-dimensional array of subproblems that

is being built up. Figure 6.11 shows the building up of subproblems in this

case: the value M[i, w] is computed from the two other values M[i − 1, w] and

M[i − 1, w − wi].

As an example of this algorithm executing, consider an instance with

weight limit W = 6, and n = 3 items of sizes w1 = w2 = 2 and w3 = 3. We find

that the optimal value OPT(3, 6) = 5 (which we get by using the third item and

one of the first two items). Figure 6.12 illustrates the way the algorithm fills

in the two-dimensional table of OPT values row by row.

Next we will worry about the running time of this algorithm. As before in

the case of weighted interval scheduling, we are building up a table of solutions

M, and we compute each of the values M[i, w] in O(1) time using the previous

values. Thus the running time is proportional to the number of entries in the

table.

6.4 Subset Sums and Knapsacks: Adding a Variable 271

00 0 0 0 0 0

0 1 2 3

Initial values

4 5 6

3

2

1

0 00 0 0 0 0 0

00 2 2 2 2 2

0 1 2 3

Filling in values for i = 1

4 5 6

3

2

1

0

00 0 0 0 0 0

00 2 2 2 2 2 00 2 2 2 2 2

00 2 3 4 5 5

00 2 2 4 4 4 00 2 2 4 4 4

0 1 2 3

Filling in values for i = 2

4 5 6

3

2

1

0 00 0 0 0 0 0

0 1 2 3

Filling in values for i = 3

4 5 6

3

2

1

0

Knapsack size W = 6, items w1 = 2, w2 = 2, w3 = 3

Figure 6.12 The iterations of the algorithm on a sample instance of the Subset Sum

Problem.

(6.9) The Subset-Sum(n, W) Algorithm correctly computes the optimal

value of the problem, and runs in O(nW) time.

Note that this method is not as efficient as our dynamic program for

the Weighted Interval Scheduling Problem. Indeed, its running time is not

a polynomial function of n; rather, it is a polynomial function of n and W,

the largest integer involved in defining the problem. We call such algorithms

pseudo-polynomial. Pseudo-polynomial algorithms can be reasonably efficient

when the numbers {wi} involved in the input are reasonably small; however,

they become less practical as these numbers grow large.

To recover an optimal set S of items, we can trace back through the array

M by a procedure similar to those we developed in the previous sections.

(6.10) Given a table M of the optimal values of the subproblems, the optimal

set S can be found in O(n) time.

Extension: The Knapsack Problem

The Knapsack Problem is a bit more complex than the scheduling problem we

discussed earlier. Consider a situation in which each item i has a nonnegative

weight wi as before, and also a distinct value vi. Our goal is now to find a

272 Chapter 6 Dynamic Programming

subset S of maximum value
∑

i∈S vi, subject to the restriction that the total

weight of the set should not exceed W:
∑

i∈S wi ≤ W.

It is not hard to extend our dynamic programming algorithm to this more

general problem. We use the analogous set of subproblems, OPT(i, w), to denote

the value of the optimal solution using a subset of the items {1, . . . , i} and

maximum available weight w. We consider an optimal solution O, and identify

two cases depending on whether or not n ∈ O.

. If n �∈ O, then OPT(n, W) = OPT(n − 1, W).

. If n ∈ O, then OPT(n, W) = vn + OPT(n − 1, W − wn).

Using this line of argument for the subproblems implies the following analogue

of (6.8).

(6.11) If w < wi then OPT(i, w) = OPT(i − 1, w). Otherwise

OPT(i, w) = max(OPT(i − 1, w), vi + OPT(i − 1, w − wi)).

Using this recurrence, we can write down a completely analogous dynamic

programming algorithm, and this implies the following fact.

(6.12) The Knapsack Problem can be solved in O(nW) time.

6.5 RNA Secondary Structure: Dynamic
Programming over Intervals

In the Knapsack Problem, we were able to formulate a dynamic programming

algorithm by adding a new variable. A different but very common way by

which one ends up adding a variable to a dynamic program is through

the following scenario. We start by thinking about the set of subproblems

on {1, 2, . . . , j}, for all choices of j, and find ourselves unable to come up

with a natural recurrence. We then look at the larger set of subproblems on

{i, i + 1, . . . , j} for all choices of i and j (where i ≤ j), and find a natural

recurrence relation on these subproblems. In this way, we have added the

second variable i; the effect is to consider a subproblem for every contiguous

interval in {1, 2, . . . , n}.

There are a few canonical problems that fit this profile; those of you who

have studied parsing algorithms for context-free grammars have probably seen

at least one dynamic programming algorithm in this style. Here we focus on

the problem of RNA secondary structure prediction, a fundamental issue in

computational biology.

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 273

U A
C

G

G

C

A
G C

A G

C

A U

G

G

A

C

C

U

G

C

A

U
C

A

G
G

CG
A

U

A

U

U

A
G

G

A
C

U

A

G C

A

A

Figure 6.13 An RNA secondary structure. Thick lines connect adjacent elements of the

sequence; thin lines indicate pairs of elements that are matched.

The Problem

As one learns in introductory biology classes, Watson and Crick posited that

double-stranded DNA is “zipped” together by complementary base-pairing.

Each strand of DNA can be viewed as a string of bases, where each base is

drawn from the set {A, C , G, T}.2 The bases A and T pair with each other, and

the bases C and G pair with each other; it is these A-T and C-G pairings that

hold the two strands together.

Now, single-stranded RNA molecules are key components in many of

the processes that go on inside a cell, and they follow more or less the

same structural principles. However, unlike double-stranded DNA, there’s no

“second strand” for the RNA to stick to; so it tends to loop back and form

base pairs with itself, resulting in interesting shapes like the one depicted in

Figure 6.13. The set of pairs (and resulting shape) formed by the RNA molecule

through this process is called the secondary structure, and understanding

the secondary structure is essential for understanding the behavior of the

molecule.

2 Adenine, cytosine, guanine, and thymine, the four basic units of DNA.

274 Chapter 6 Dynamic Programming

For our purposes, a single-stranded RNA molecule can be viewed as a

sequence of n symbols (bases) drawn from the alphabet {A, C , G, U}.3 Let B =

b1b2
. . . bn be a single-stranded RNA molecule, where each bi ∈ {A, C , G, U}.

To a first approximation, one can model its secondary structure as follows. As

usual, we require that A pairs with U, and C pairs with G; we also require

that each base can pair with at most one other base—in other words, the set

of base pairs forms a matching. It also turns out that secondary structures are

(again, to a first approximation) “knot-free,” which we will formalize as a kind

of noncrossing condition below.

Thus, concretely, we say that a secondary structure on B is a set of pairs

S = {(i, j)}, where i, j ∈ {1, 2, . . . , n}, that satisfies the following conditions.

(i) (No sharp turns.) The ends of each pair in S are separated by at least four

intervening bases; that is, if (i, j) ∈ S, then i < j − 4.

(ii) The elements of any pair in S consist of either {A, U} or {C , G} (in either

order).

(iii) S is a matching: no base appears in more than one pair.

(iv) (The noncrossing condition.) If (i, j) and (k, ℓ) are two pairs in S, then

we cannot have i < k < j < ℓ. (See Figure 6.14 for an illustration.)

Note that the RNA secondary structure in Figure 6.13 satisfies properties (i)

through (iv). From a structural point of view, condition (i) arises simply

because the RNA molecule cannot bend too sharply; and conditions (ii) and

(iii) are the fundamental Watson-Crick rules of base-pairing. Condition (iv) is

the striking one, since it’s not obvious why it should hold in nature. But while

there are sporadic exceptions to it in real molecules (via so-called pseudo-

knotting), it does turn out to be a good approximation to the spatial constraints

on real RNA secondary structures.

Now, out of all the secondary structures that are possible for a single

RNA molecule, which are the ones that are likely to arise under physiological

conditions? The usual hypothesis is that a single-stranded RNA molecule will

form the secondary structure with the optimum total free energy. The correct

model for the free energy of a secondary structure is a subject of much debate;

but a first approximation here is to assume that the free energy of a secondary

structure is proportional simply to the number of base pairs that it contains.

Thus, having said all this, we can state the basic RNA secondary structure

prediction problem very simply: We want an efficient algorithm that takes

3 Note that the symbol T from the alphabet of DNA has been replaced by a U, but this is not important

for us here.

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 275

C

C A

G

G

(a) (b)

A

U

G

U

A C A U G A U G G C C A U G U

U

G

U

A

C

A

Figure 6.14 Two views of an RNA secondary structure. In the second view, (b), the

string has been “stretched” lengthwise, and edges connecting matched pairs appear as

noncrossing “bubbles” over the string.

a single-stranded RNA molecule B = b1b2
. . . bn and determines a secondary

structure S with the maximum possible number of base pairs.

Designing and Analyzing the Algorithm

A First Attempt at Dynamic Programming The natural first attempt to

apply dynamic programming would presumably be based on the following

subproblems: We say that OPT(j) is the maximum number of base pairs in a

secondary structure on b1b2
. . . bj. By the no-sharp-turns condition above, we

know that OPT(j) = 0 for j ≤ 5; and we know that OPT(n) is the solution we’re

looking for.

The trouble comes when we try writing down a recurrence that expresses

OPT(j) in terms of the solutions to smaller subproblems. We can get partway

there: in the optimal secondary structure on b1b2
. . . bj, it’s the case that either

. j is not involved in a pair; or

. j pairs with t for some t < j − 4.

In the first case, we just need to consult our solution for OPT(j − 1). The second

case is depicted in Figure 6.15(a); because of the noncrossing condition,

we now know that no pair can have one end between 1 and t − 1 and the

other end between t + 1 and j − 1. We’ve therefore effectively isolated two

new subproblems: one on the bases b1b2
. . . bt−1, and the other on the bases

bt+1
. . . bj−1. The first is solved by OPT(t − 1), but the second is not on our list

of subproblems, because it does not begin with b1.

276 Chapter 6 Dynamic Programming

(a)

1 2 t – 1 t t + 1 j – 1 j

(b)

i t – 1 t t + 1 j – 1 j

Including the pair (t, j) results in

two independent subproblems.

Figure 6.15 Schematic views of the dynamic programming recurrence using (a) one

variable, and (b) two variables.

This is the insight that makes us realize we need to add a variable. We

need to be able to work with subproblems that do not begin with b1; in other

words, we need to consider subproblems on bibi+1
. . . bj for all choices of i ≤ j.

Dynamic Programming over Intervals Once we make this decision, our

previous reasoning leads straight to a successful recurrence. Let OPT(i, j) denote

the maximum number of base pairs in a secondary structure on bibi+1
. . . bj.

The no-sharp-turns condition lets us initialize OPT(i, j) = 0 whenever i ≥ j − 4.

(For notational convenience, we will also allow ourselves to refer to OPT(i, j)

even when i > j; in this case, its value is 0.)

Now, in the optimal secondary structure on bibi+1
. . . bj, we have the same

alternatives as before:

. j is not involved in a pair; or

. j pairs with t for some t < j − 4.

In the first case, we have OPT(i, j) = OPT(i, j − 1). In the second case, depicted

in Figure 6.15(b), we recur on the two subproblems OPT(i, t − 1) and OPT(t +

1, j − 1); as argued above, the noncrossing condition has isolated these two

subproblems from each other.

We have therefore justified the following recurrence.

(6.13) OPT(i, j) = max(OPT(i, j − 1), max(1+ OPT(i, t − 1) + OPT(t + 1, j − 1))),

where the max is taken over t such that bt and bj are an allowable base pair

(under conditions (i) and (ii) from the definition of a secondary structure).

Now we just have to make sure we understand the proper order in which

to build up the solutions to the subproblems. The form of (6.13) reveals that

we’re always invoking the solution to subproblems on shorter intervals: those

6.5 RNA Secondary Structure: Dynamic Programming over Intervals 277

00 0

00

0

1

00 0 0

00 1

00

11

00 0 0

00 1 1

00 1

j = 6 7 8 9

Initial values

4

3

2

i = 1

j = 6 7 8 9

Filling in the values

for k = 5

4

3

2

i = 1

11 1

00 0 0

00 1 1

00 1 1

1 1 1 2

00 0 0

00 1

0 1

1

10

j = 6 7 8 9

Filling in the values

for k = 7

4

3

2

i = 1

j = 6 7 8 9

Filling in the values

for k = 8

4

3

2

i = 1

RNA sequence ACCGGUAGU

j = 6 7 8 9

Filling in the values

for k = 6

4

3

2

i = 1

Figure 6.16 The iterations of the algorithm on a sample instance of the RNA Secondary

Structure Prediction Problem.

for which k = j − i is smaller. Thus things will work without any trouble if we

build up the solutions in order of increasing interval length.

Initialize OPT(i, j) = 0 whenever i ≥ j − 4

For k = 5, 6, . . . , n − 1

For i = 1, 2, . . . n − k

Set j = i + k

Compute OPT(i, j) using the recurrence in (6.13)

Endfor

Endfor

Return OPT(1, n)

As an example of this algorithm executing, we consider the input

ACCGGUAGU, a subsequence of the sequence in Figure 6.14. As with the

Knapsack Problem, we need two dimensions to depict the array M: one for

the left endpoint of the interval being considered, and one for the right end-

point. In the figure, we only show entries corresponding to [i, j] pairs with

i < j − 4, since these are the only ones that can possibly be nonzero.

It is easy to bound the running time: there are O(n2) subproblems to solve,

and evaluating the recurrence in (6.13) takes time O(n) for each. Thus the

running time is O(n3).

278 Chapter 6 Dynamic Programming

As always, we can recover the secondary structure itself (not just its value)

by recording how the minima in (6.13) are achieved and tracing back through

the computation.

6.6 Sequence Alignment
For the remainder of this chapter, we consider two further dynamic program-

ming algorithms that each have a wide range of applications. In the next two

sections we discuss sequence alignment, a fundamental problem that arises

in comparing strings. Following this, we turn to the problem of computing

shortest paths in graphs when edges have costs that may be negative.

The Problem

Dictionaries on the Web seem to get more and more useful: often it seems easier

to pull up a bookmarked online dictionary than to get a physical dictionary

down from the bookshelf. And many online dictionaries offer functions that

you can’t get from a printed one: if you’re looking for a definition and type in a

word it doesn’t contain—say, ocurrance—it will come back and ask, “Perhaps

you mean occurrence?” How does it do this? Did it truly know what you had

in mind?

Let’s defer the second question to a different book and think a little about

the first one. To decide what you probably meant, it would be natural to search

the dictionary for the word most “similar” to the one you typed in. To do this,

we have to answer the question: How should we define similarity between

two words or strings?

Intuitively, we’d like to say that ocurrance and occurrence are similar

because we can make the two words identical if we add a c to the first word

and change the a to an e. Since neither of these changes seems so large, we

conclude that the words are quite similar. To put it another way, we can nearly

line up the two words letter by letter:

o-currance

occurrence

The hyphen (-) indicates a gap where we had to add a letter to the second

word to get it to line up with the first. Moreover, our lining up is not perfect

in that an e is lined up with an a.

We want a model in which similarity is determined roughly by the number

of gaps and mismatches we incur when we line up the two words. Of course,

there are many possible ways to line up the two words; for example, we could

have written

6.6 Sequence Alignment 279

o-curr-ance

occurre-nce

which involves three gaps and no mismatches. Which is better: one gap and

one mismatch, or three gaps and no mismatches?

This discussion has been made easier because we know roughly what

the correspondence ought to look like. When the two strings don’t look like

English words—for example, abbbaabbbbaab and ababaaabbbbbab—it may

take a little work to decide whether they can be lined up nicely or not:

abbbaa--bbbbaab

ababaaabbbbba-b

Dictionary interfaces and spell-checkers are not the most computationally

intensive application for this type of problem. In fact, determining similarities

among strings is one of the central computational problems facing molecular

biologists today.

Strings arise very naturally in biology: an organism’s genome—its full set

of genetic material—is divided up into giant linear DNA molecules known

as chromosomes, each of which serves conceptually as a one-dimensional

chemical storage device. Indeed, it does not obscure reality very much to

think of it as an enormous linear tape, containing a string over the alphabet

{A, C , G, T}. The string of symbols encodes the instructions for building

protein molecules; using a chemical mechanism for reading portions of the

chromosome, a cell can construct proteins that in turn control its metabolism.

Why is similarity important in this picture? To a first approximation, the

sequence of symbols in an organism’s genome can be viewed as determining

the properties of the organism. So suppose we have two strains of bacteria,

X and Y, which are closely related evolutionarily. Suppose further that we’ve

determined that a certain substring in the DNA of X codes for a certain kind

of toxin. Then, if we discover a very “similar” substring in the DNA of Y,

we might be able to hypothesize, before performing any experiments at all,

that this portion of the DNA in Y codes for a similar kind of toxin. This use

of computation to guide decisions about biological experiments is one of the

hallmarks of the field of computational biology.

All this leaves us with the same question we asked initially, while typing

badly spelled words into our online dictionary: How should we define the

notion of similarity between two strings?

In the early 1970s, the two molecular biologists Needleman and Wunsch

proposed a definition of similarity, which, basically unchanged, has become

280 Chapter 6 Dynamic Programming

the standard definition in use today. Its position as a standard was reinforced by

its simplicity and intuitive appeal, as well as through its independent discovery

by several other researchers around the same time. Moreover, this definition of

similarity came with an efficient dynamic programming algorithm to compute

it. In this way, the paradigm of dynamic programming was independently

discovered by biologists some twenty years after mathematicians and computer

scientists first articulated it.

The definition is motivated by the considerations we discussed above, and

in particular by the notion of “lining up” two strings. Suppose we are given two

strings X and Y, where X consists of the sequence of symbols x1x2
. . . xm and Y

consists of the sequence of symbols y1y2
. . . yn. Consider the sets {1, 2, . . . , m}

and {1, 2, . . . , n} as representing the different positions in the strings X and Y,

and consider a matching of these sets; recall that a matching is a set of ordered

pairs with the property that each item occurs in at most one pair. We say that a

matching M of these two sets is an alignment if there are no “crossing” pairs:

if (i, j), (i′, j′) ∈ M and i < i′, then j < j′. Intuitively, an alignment gives a way

of lining up the two strings, by telling us which pairs of positions will be lined

up with one another. Thus, for example,

stop-

-tops

corresponds to the alignment {(2, 1), (3, 2), (4, 3)}.

Our definition of similarity will be based on finding the optimal alignment

between X and Y, according to the following criteria. Suppose M is a given

alignment between X and Y.

. First, there is a parameter δ > 0 that defines a gap penalty. For each

position of X or Y that is not matched in M—it is a gap—we incur a

cost of δ.

. Second, for each pair of letters p, q in our alphabet, there is a mismatch

cost of αpq for lining up p with q. Thus, for each (i, j) ∈ M, we pay the

appropriate mismatch cost αxiyj
for lining up xi with yj. One generally

assumes that αpp = 0 for each letter p—there is no mismatch cost to line

up a letter with another copy of itself—although this will not be necessary

in anything that follows.

. The cost of M is the sum of its gap and mismatch costs, and we seek an

alignment of minimum cost.

The process of minimizing this cost is often referred to as sequence alignment

in the biology literature. The quantities δ and {αpq} are external parameters

that must be plugged into software for sequence alignment; indeed, a lot of

work goes into choosing the settings for these parameters. From our point of

6.6 Sequence Alignment 281

view, in designing an algorithm for sequence alignment, we will take them as

given. To go back to our first example, notice how these parameters determine

which alignment of ocurrance and occurrence we should prefer: the first is

strictly better if and only if δ + αae < 3δ.

Designing the Algorithm

We now have a concrete numerical definition for the similarity between

strings X and Y: it is the minimum cost of an alignment between X and Y. The

lower this cost, the more similar we declare the strings to be. We now turn to

the problem of computing this minimum cost, and an optimal alignment that

yields it, for a given pair of strings X and Y.

One of the approaches we could try for this problem is dynamic program-

ming, and we are motivated by the following basic dichotomy.

. In the optimal alignment M, either (m, n) ∈ M or (m, n) �∈ M. (That is,

either the last symbols in the two strings are matched to each other, or

they aren’t.)

By itself, this fact would be too weak to provide us with a dynamic program-

ming solution. Suppose, however, that we compound it with the following

basic fact.

(6.14) Let M be any alignment of X and Y. If (m, n) �∈ M, then either the

mth position of X or the nth position of Y is not matched in M.

Proof. Suppose by way of contradiction that (m, n) �∈ M, and there are num-

bers i < m and j < n so that (m, j) ∈ M and (i, n) ∈ M. But this contradicts our

definition of alignment: we have (i, n), (m, j) ∈ M with i < m, but n > i so the

pairs (i, n) and (m, j) cross.

There is an equivalent way to write (6.14) that exposes three alternative

possibilities, and leads directly to the formulation of a recurrence.

(6.15) In an optimal alignment M, at least one of the following is true:

(i) (m, n) ∈ M; or

(ii) the mth position of X is not matched; or

(iii) the nth position of Y is not matched.

Now, let OPT(i, j) denote the minimum cost of an alignment between

x1x2
. . . xi and y1y2

. . . yj. If case (i) of (6.15) holds, we pay αxmyn
and then

align x1x2
. . . xm−1 as well as possible with y1y2

. . . yn−1; we get OPT(m, n) =

αxmyn
+ OPT(m − 1, n − 1). If case (ii) holds, we pay a gap cost of δ since the

mth position of X is not matched, and then we align x1x2
. . . xm−1 as well as

282 Chapter 6 Dynamic Programming

possible with y1y2
. . . yn. In this way, we get OPT(m, n) = δ + OPT(m − 1, n).

Similarly, if case (iii) holds, we get OPT(m, n) = δ + OPT(m, n − 1).

Using the same argument for the subproblem of finding the minimum-cost

alignment between x1x2
. . . xi and y1y2

. . . yj, we get the following fact.

(6.16) The minimum alignment costs satisfy the following recurrence for i ≥ 1

and j ≥ 1:

OPT(i, j) = min[αxiyj
+ OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i, j − 1)].

Moreover, (i, j) is in an optimal alignment M for this subproblem if and only

if the minimum is achieved by the first of these values.

We have maneuvered ourselves into a position where the dynamic pro-

gramming algorithm has become clear: We build up the values of OPT(i, j) using

the recurrence in (6.16). There are only O(mn) subproblems, and OPT(m, n)

is the value we are seeking.

We now specify the algorithm to compute the value of the optimal align-

ment. For purposes of initialization, we note that OPT(i, 0) = OPT(0, i) = iδ for

all i, since the only way to line up an i-letter word with a 0-letter word is to

use i gaps.

Alignment(X,Y)

Array A[0 . . . m, 0 . . . n]

Initialize A[i, 0]= iδ for each i

Initialize A[0, j]= jδ for each j

For j = 1, . . . , n

For i = 1, . . . , m

Use the recurrence (6.16) to compute A[i, j]

Endfor

Endfor

Return A[m, n]

As in previous dynamic programming algorithms, we can trace back

through the array A, using the second part of fact (6.16), to construct the

alignment itself.

Analyzing the Algorithm

The correctness of the algorithm follows directly from (6.16). The running time

is O(mn), since the array A has O(mn) entries, and at worst we spend constant

time on each.

6.6 Sequence Alignment 283

x3

x2

x1

y1 y2 y3 y4

Figure 6.17 A graph-based picture of sequence alignment.

There is an appealing pictorial way in which people think about this

sequence alignment algorithm. Suppose we build a two-dimensional m × n

grid graph GXY, with the rows labeled by symbols in the string X, the columns

labeled by symbols in Y, and directed edges as in Figure 6.17.

We number the rows from 0 to m and the columns from 0 to n; we denote

the node in the ith row and the jth column by the label (i, j). We put costs on

the edges of GXY: the cost of each horizontal and vertical edge is δ, and the

cost of the diagonal edge from (i − 1, j − 1) to (i, j) is αxiyj
.

The purpose of this picture now emerges: the recurrence in (6.16) for

OPT(i, j) is precisely the recurrence one gets for the minimum-cost path in GXY

from (0, 0) to (i, j). Thus we can show

(6.17) Let f (i, j) denote the minimum cost of a path from (0, 0) to (i, j) in

GXY. Then for all i, j, we have f (i, j) = OPT(i, j).

Proof. We can easily prove this by induction on i + j. When i + j = 0, we have

i = j = 0, and indeed f (i, j) = OPT(i, j) = 0.

Now consider arbitrary values of i and j, and suppose the statement is

true for all pairs (i′, j′) with i′ + j′ < i + j. The last edge on the shortest path to

(i, j) is either from (i − 1, j − 1), (i − 1, j), or (i, j − 1). Thus we have

f (i, j) = min[αxiyj
+ f (i − 1, j − 1), δ + f (i − 1, j), δ + f (i, j − 1)]

= min[αxiyj
+ OPT(i − 1, j − 1), δ + OPT(i − 1, j), δ + OPT(i, j − 1)]

= OPT(i, j),

where we pass from the first line to the second using the induction hypothesis,

and we pass from the second to the third using (6.16).

284 Chapter 6 Dynamic Programming

68 5

3

4

55

2 43

3 41

6

4

4 6

6

5

4

6

820

a m en—

2

n

a

e

m

—

Figure 6.18 The OPT values

for the problem of aligning

the words mean to name.

Thus the value of the optimal alignment is the length of the shortest path

in GXY from (0, 0) to (m, n). (We’ll call any path in GXY from (0, 0) to (m, n)

a corner-to-corner path.) Moreover, the diagonal edges used in a shortest path

correspond precisely to the pairs used in a minimum-cost alignment. These

connections to the Shortest-Path Problem in the graph GXY do not directly yield

an improvement in the running time for the sequence alignment problem;

however, they do help one’s intuition for the problem and have been useful in

suggesting algorithms for more complex variations on sequence alignment.

For an example, Figure 6.18 shows the value of the shortest path from (0, 0)

to each node (i, j) for the problem of aligning the words mean and name. For

the purpose of this example, we assume that δ = 2; matching a vowel with

a different vowel, or a consonant with a different consonant, costs 1; while

matching a vowel and a consonant with each other costs 3. For each cell in

the table (representing the corresponding node), the arrow indicates the last

step of the shortest path leading to that node—in other words, the way that

the minimum is achieved in (6.16). Thus, by following arrows backward from

node (4, 4), we can trace back to construct the alignment.

6.7 Sequence Alignment in Linear Space via
Divide and Conquer

In the previous section, we showed how to compute the optimal alignment

between two strings X and Y of lengths m and n, respectively. Building up the

two-dimensional m-by-n array of optimal solutions to subproblems, OPT(·, ·),

turned out to be equivalent to constructing a graph GXY with mn nodes laid

out in a grid and looking for the cheapest path between opposite corners. In

either of these ways of formulating the dynamic programming algorithm, the

running time is O(mn), because it takes constant time to determine the value

in each of the mn cells of the array OPT; and the space requirement is O(mn)

as well, since it was dominated by the cost of storing the array (or the graph

GXY).

The Problem

The question we ask in this section is: Should we be happy with O(mn)

as a space bound? If our application is to compare English words, or even

English sentences, it is quite reasonable. In biological applications of sequence

alignment, however, one often compares very long strings against one another;

and in these cases, the �(mn) space requirement can potentially be a more

severe problem than the �(mn) time requirement. Suppose, for example, that

we are comparing two strings of 100,000 symbols each. Depending on the

underlying processor, the prospect of performing roughly 10 billion primitive

6.7 Sequence Alignment in Linear Space via Divide and Conquer 285

operations might be less cause for worry than the prospect of working with a

single 10-gigabyte array.

Fortunately, this is not the end of the story. In this section we describe a

very clever enhancement of the sequence alignment algorithm that makes it

work in O(mn) time using only O(m + n) space. In other words, we can bring

the space requirement down to linear while blowing up the running time by

at most an additional constant factor. For ease of presentation, we’ll describe

various steps in terms of paths in the graph GXY, with the natural equivalence

back to the sequence alignment problem. Thus, when we seek the pairs in

an optimal alignment, we can equivalently ask for the edges in a shortest

corner-to-corner path in GXY.

The algorithm itself will be a nice application of divide-and-conquer ideas.

The crux of the technique is the observation that, if we divide the problem

into several recursive calls, then the space needed for the computation can be

reused from one call to the next. The way in which this idea is used, however,

is fairly subtle.

Designing the Algorithm

We first show that if we only care about the value of the optimal alignment,

and not the alignment itself, it is easy to get away with linear space. The

crucial observation is that to fill in an entry of the array A, the recurrence in

(6.16) only needs information from the current column of A and the previous

column of A. Thus we will “collapse” the array A to an m × 2 array B: as the

algorithm iterates through values of j, entries of the form B[i, 0] will hold the

“previous” column’s value A[i, j − 1], while entries of the form B[i, 1]will hold

the “current” column’s value A[i, j].

Space-Efficient-Alignment(X,Y)

Array B[0 . . . m, 0 . . . 1]

Initialize B[i, 0]= iδ for each i (just as in column 0 of A)

For j = 1, . . . , n

B[0, 1]= jδ (since this corresponds to entry A[0, j])

For i = 1, . . . , m

B[i, 1]= min[αxiyj
+ B[i − 1, 0],

δ + B[i − 1, 1], δ + B[i, 0]]

Endfor

Move column 1 of B to column 0 to make room for next iteration:

Update B[i, 0]= B[i, 1] for each i

Endfor

286 Chapter 6 Dynamic Programming

It is easy to verify that when this algorithm completes, the array entry

B[i, 1]holds the value of OPT(i, n) for i = 0, 1, . . . , m. Moreover, it uses O(mn)

time and O(m) space. The problem is: where is the alignment itself? We

haven’t left enough information around to be able to run a procedure like

Find-Alignment. Since B at the end of the algorithm only contains the last

two columns of the original dynamic programming array A, if we were to try

tracing back to get the path, we’d run out of information after just these two

columns. We could imagine getting around this difficulty by trying to “predict”

what the alignment is going to be in the process of running our space-efficient

procedure. In particular, as we compute the values in the jth column of the

(now implicit) array A, we could try hypothesizing that a certain entry has a

very small value, and hence that the alignment that passes through this entry

is a promising candidate to be the optimal one. But this promising alignment

might run into big problems later on, and a different alignment that currently

looks much less attractive could turn out to be the optimal one.

There is, in fact, a solution to this problem—we will be able to recover

the alignment itself using O(m + n) space—but it requires a genuinely new

idea. The insight is based on employing the divide-and-conquer technique

that we’ve seen earlier in the book. We begin with a simple alternative way to

implement the basic dynamic programming solution.

A Backward Formulation of the Dynamic Program Recall that we use f (i, j)

to denote the length of the shortest path from (0, 0) to (i, j) in the graph GXY.

(As we showed in the initial sequence alignment algorithm, f (i, j) has the

same value as OPT(i, j).) Now let’s define g(i, j) to be the length of the shortest

path from (i, j) to (m, n) in GXY. The function g provides an equally natural

dynamic programming approach to sequence alignment, except that we build

it up in reverse: we start with g(m, n) = 0, and the answer we want is g(0, 0).

By strict analogy with (6.16), we have the following recurrence for g.

(6.18) For i < m and j < n we have

g(i, j) = min[αxi+1yj+1
+ g(i + 1, j + 1), δ + g(i, j + 1), δ + g(i + 1, j)].

This is just the recurrence one obtains by taking the graph GXY, “rotating”

it so that the node (m, n) is in the lower left corner, and using the previous ap-

proach. Using this picture, we can also work out the full dynamic programming

algorithm to build up the values of g, backward starting from (m, n). Similarly,

there is a space-efficient version of this backward dynamic programming al-

gorithm, analogous to Space-Efficient-Alignment, which computes the

value of the optimal alignment using only O(m + n) space. We will refer to

6.7 Sequence Alignment in Linear Space via Divide and Conquer 287

this backward version, naturally enough, as Backward-Space-Efficient-

Alignment.

Combining the Forward and Backward Formulations So now we have

symmetric algorithms which build up the values of the functions f and g.

The idea will be to use these two algorithms in concert to find the optimal

alignment. First, here are two basic facts summarizing some relationships

between the functions f and g.

(6.19) The length of the shortest corner-to-corner path in GXY that passes

through (i, j) is f (i, j) + g(i, j).

Proof. Let ℓij denote the length of the shortest corner-to-corner path in GXY

that passes through (i, j). Clearly, any such path must get from (0, 0) to (i, j)

and then from (i, j) to (m, n). Thus its length is at least f (i, j) + g(i, j), and so

we have ℓij ≥ f (i, j) + g(i, j). On the other hand, consider the corner-to-corner

path that consists of a minimum-length path from (0, 0) to (i, j), followed by a

minimum-length path from (i, j) to (m, n). This path has length f (i, j) + g(i, j),

and so we have ℓij ≤ f (i, j) + g(i, j). It follows that ℓij = f (i, j) + g(i, j).

(6.20) Let k be any number in {0, . . . , n}, and let q be an index that

minimizes the quantity f (q, k) + g(q, k). Then there is a corner-to-corner path

of minimum length that passes through the node (q, k).

Proof. Let ℓ∗ denote the length of the shortest corner-to-corner path in GXY.

Now fix a value of k ∈ {0, . . . , n}. The shortest corner-to-corner path must use

some node in the kth column of GXY—let’s suppose it is node (p, k)—and thus

by (6.19)

ℓ∗ = f (p, k) + g(p, k) ≥ min
q

f (q, k) + g(q, k).

Now consider the index q that achieves the minimum in the right-hand side

of this expression; we have

ℓ∗ ≥ f (q, k) + g(q, k).

By (6.19) again, the shortest corner-to-corner path using the node (q, k) has

length f (q, k) + g(q, k), and since ℓ∗ is the minimum length of any corner-to-

corner path, we have

ℓ∗ ≤ f (q, k) + g(q, k).

It follows that ℓ∗ = f (q, k) + g(q, k). Thus the shortest corner-to-corner path

using the node (q, k) has length ℓ∗, and this proves (6.20).

288 Chapter 6 Dynamic Programming

Using (6.20) and our space-efficient algorithms to compute the value of the

optimal alignment, we will proceed as follows. We divide GXY along its center

column and compute the value of f (i, n/2) and g(i, n/2) for each value of i,

using our two space-efficient algorithms. We can then determine the minimum

value of f (i, n/2) + g(i, n/2), and conclude via (6.20) that there is a shortest

corner-to-corner path passing through the node (i, n/2). Given this, we can

search for the shortest path recursively in the portion of GXY between (0, 0)

and (i, n/2) and in the portion between (i, n/2) and (m, n). The crucial point

is that we apply these recursive calls sequentially and reuse the working space

from one call to the next. Thus, since we only work on one recursive call at a

time, the total space usage is O(m + n). The key question we have to resolve

is whether the running time of this algorithm remains O(mn).

In running the algorithm, we maintain a globally accessible list P which

will hold nodes on the shortest corner-to-corner path as they are discovered.

Initially, P is empty. P need only have m + n entries, since no corner-to-corner

path can use more than this many edges. We also use the following notation:

X[i : j], for 1≤ i ≤ j ≤ m, denotes the substring of X consisting of xixi+1
. . . xj;

and we define Y[i : j] analogously. We will assume for simplicity that n is a

power of 2; this assumption makes the discussion much cleaner, although it

can be easily avoided.

Divide-and-Conquer-Alignment(X,Y)

Let m be the number of symbols in X

Let n be the number of symbols in Y

If m ≤ 2 or n ≤ 2 then

Compute optimal alignment using Alignment(X,Y)

Call Space-Efficient-Alignment(X,Y[1 : n/2])

Call Backward-Space-Efficient-Alignment(X,Y[n/2 + 1 : n])

Let q be the index minimizing f (q, n/2) + g(q, n/2)

Add (q, n/2) to global list P

Divide-and-Conquer-Alignment(X[1 : q],Y[1 : n/2])

Divide-and-Conquer-Alignment(X[q + 1 : n],Y[n/2 + 1 : n])

Return P

As an example of the first level of recursion, consider Figure 6.19. If the

minimizing index q turns out to be 1, we get the two subproblems pictured.

Analyzing the Algorithm

The previous arguments already establish that the algorithm returns the correct

answer and that it uses O(m + n) space. Thus, we need only verify the

following fact.

6.7 Sequence Alignment in Linear Space via Divide and Conquer 289

x3

x2

x1

y1 y2 y3 y4

Second recursive call

First recursive call

Figure 6.19 The first level of recurrence for the space-efficient Divide-and-Conquer-
Alignment. The two boxed regions indicate the input to the two recursive cells.

(6.21) The running time of Divide-and-Conquer-Alignment on strings of

length m and n is O(mn).

Proof. Let T(m, n) denote the maximum running time of the algorithm on

strings of length m and n. The algorithm performs O(mn) work to build up

the arrays B and B′; it then runs recursively on strings of size q and n/2, and

on strings of size m − q and n/2. Thus, for some constant c, and some choice

of index q, we have

T(m, n) ≤ cmn + T(q, n/2) + T(m − q, n/2)

T(m, 2) ≤ cm

T(2, n) ≤ cn.

This recurrence is more complex than the ones we’ve seen in our earlier

applications of divide-and-conquer in Chapter 5. First of all, the running time

is a function of two variables (m and n) rather than just one; also, the division

into subproblems is not necessarily an “even split,” but instead depends on

the value q that is found through the earlier work done by the algorithm.

So how should we go about solving such a recurrence? One way is to

try guessing the form by considering a special case of the recurrence, and

then using partial substitution to fill out the details of this guess. Specifically,

suppose that we were in a case in which m = n, and in which the split point

q were exactly in the middle. In this (admittedly restrictive) special case, we

could write the function T(·) in terms of the single variable n, set q = n/2

(since we’re assuming a perfect bisection), and have

T(n) ≤ 2T(n/2) + cn2.

290 Chapter 6 Dynamic Programming

This is a useful expression, since it’s something that we solved in our earlier

discussion of recurrences at the outset of Chapter 5. Specifically, this recur-

rence implies T(n) = O(n2).

So when m = n and we get an even split, the running time grows like the

square of n. Motivated by this, we move back to the fully general recurrence

for the problem at hand and guess that T(m, n) grows like the product of m and

n. Specifically, we’ll guess that T(m, n) ≤ kmn for some constant k, and see if

we can prove this by induction. To start with the base cases m ≤ 2 and n ≤ 2,

we see that these hold as long as k ≥ c/2. Now, assuming T(m′, n′) ≤ km′n′

holds for pairs (m′, n′) with a smaller product, we have

T(m, n) ≤ cmn + T(q, n/2) + T(m − q, n/2)

≤ cmn + kqn/2 + k(m − q)n/2

= cmn + kqn/2 + kmn/2 − kqn/2

= (c + k/2)mn.

Thus the inductive step will work if we choose k = 2c, and this completes the

proof.

6.8 Shortest Paths in a Graph
For the final three sections, we focus on the problem of finding shortest paths

in a graph, together with some closely related issues.

The Problem

Let G = (V , E) be a directed graph. Assume that each edge (i, j) ∈ E has an

associated weight cij. The weights can be used to model a number of different

things; we will picture here the interpretation in which the weight cij represents

a cost for going directly from node i to node j in the graph.

Earlier we discussed Dijkstra’s Algorithm for finding shortest paths in

graphs with positive edge costs. Here we consider the more complex problem

in which we seek shortest paths when costs may be negative. Among the

motivations for studying this problem, here are two that particularly stand

out. First, negative costs turn out to be crucial for modeling a number of

phenomena with shortest paths. For example, the nodes may represent agents

in a financial setting, and cij represents the cost of a transaction in which

we buy from agent i and then immediately sell to agent j. In this case, a

path would represent a succession of transactions, and edges with negative

costs would represent transactions that result in profits. Second, the algorithm

that we develop for dealing with edges of negative cost turns out, in certain

crucial ways, to be more flexible and decentralized than Dijkstra’s Algorithm.

As a consequence, it has important applications for the design of distributed

6.8 Shortest Paths in a Graph 291

routing algorithms that determine the most efficient path in a communication

network.

In this section and the next two, we will consider the following two related

problems.

. Given a graph G with weights, as described above, decide if G has a

negative cycle—that is, a directed cycle C such that
∑

ij∈C

cij < 0.

. If the graph has no negative cycles, find a path P from an origin node s

to a destination node t with minimum total cost:
∑

ij∈P

cij

should be as small as possible for any s-t path. This is generally called

both the Minimum-Cost Path Problem and the Shortest-Path Problem.

In terms of our financial motivation above, a negative cycle corresponds to a

profitable sequence of transactions that takes us back to our starting point: we

buy from i1, sell to i2, buy from i2, sell to i3, and so forth, finally arriving back

at i1 with a net profit. Thus negative cycles in such a network can be viewed

as good arbitrage opportunities.

It makes sense to consider the minimum-cost s-t path problem under the

assumption that there are no negative cycles. As illustrated by Figure 6.20, if

there is a negative cycle C, a path Ps from s to the cycle, and another path Pt

from the cycle to t, then we can build an s-t path of arbitrarily negative cost:

we first use Ps to get to the negative cycle C, then we go around C as many

times as we want, and then we use Pt to get from C to the destination t.

Designing and Analyzing the Algorithm

A Few False Starts Let’s begin by recalling Dijkstra’s Algorithm for the

Shortest-Path Problem when there are no negative costs. That method

CPs –1–2

1

11 212
ts

Pt

Figure 6.20 In this graph, one can find s-t paths of arbitrarily negative cost (by going

around the cycle C many times).

292 Chapter 6 Dynamic Programming

(a)

v

ws

u

1 –6

(b)

ts

–3

3 3

2 3

2 2

Figure 6.21 (a) With negative

edge costs, Dijkstra’s Algo-

rithm can give the wrong

answer for the Shortest-Path

Problem. (b) Adding 3 to the

cost of each edge will make

all edges nonnegative, but it

will change the identity of the

shortest s-t path.

computes a shortest path from the origin s to every other node v in the graph,

essentially using a greedy algorithm. The basic idea is to maintain a set S

with the property that the shortest path from s to each node in S is known.

We start with S = {s}—since we know the shortest path from s to s has cost 0

when there are no negative edges—and we add elements greedily to this set S.

As our first greedy step, we consider the minimum-cost edge leaving node s,

that is, mini∈V csi. Let v be a node on which this minimum is obtained. A key

observation underlying Dijkstra’s Algorithm is that the shortest path from s

to v is the single-edge path {s, v}. Thus we can immediately add the node v

to the set S. The path {s, v} is clearly the shortest to v if there are no negative

edge costs: any other path from s to v would have to start on an edge out of s

that is at least as expensive as edge (s, v).

The above observation is no longer true if we can have negative edge

costs. As suggested by the example in Figure 6.21(a), a path that starts on an

expensive edge, but then compensates with subsequent edges of negative cost,

can be cheaper than a path that starts on a cheap edge. This suggests that the

Dijkstra-style greedy approach will not work here.

Another natural idea is to first modify the costs cij by adding some large

constant M to each; that is, we let c′
ij = cij + M for each edge (i, j) ∈ E. If the

constant M is large enough, then all modified costs are nonnegative, and we

can use Dijkstra’s Algorithm to find the minimum-cost path subject to costs

c′. However, this approach fails to find the correct minimum-cost paths with

respect to the original costs c. The problem here is that changing the costs from

c to c′ changes the minimum-cost path. For example (as in Figure 6.21(b)), if

a path P consisting of three edges is only slightly cheaper than another path

P′ that has two edges, then after the change in costs, P′ will be cheaper, since

we only add 2M to the cost of P′ while adding 3M to the cost of P.

A Dynamic Programming Approach We will try to use dynamic program-

ming to solve the problem of finding a shortest path from s to t when there

are negative edge costs but no negative cycles. We could try an idea that has

worked for us so far: subproblem i could be to find a shortest path using only

the first i nodes. This idea does not immediately work, but it can be made

to work with some effort. Here, however, we will discuss a simpler and more

efficient solution, the Bellman-Ford Algorithm. The development of dynamic

programming as a general algorithmic technique is often credited to the work

of Bellman in the 1950’s; and the Bellman-Ford Shortest-Path Algorithm was

one of the first applications.

The dynamic programming solution we develop will be based on the

following crucial observation.

6.8 Shortest Paths in a Graph 293

w
t

v

P

Figure 6.22 The minimum-cost path P from v to t using at most i edges.

(6.22) If G has no negative cycles, then there is a shortest path from s to t

that is simple (i.e., does not repeat nodes), and hence has at most n − 1 edges.

Proof. Since every cycle has nonnegative cost, the shortest path P from s to

t with the fewest number of edges does not repeat any vertex v. For if P did

repeat a vertex v, we could remove the portion of P between consecutive visits

to v, resulting in a path of no greater cost and fewer edges.

Let’s use OPT(i, v) to denote the minimum cost of a v-t path using at most

i edges. By (6.22), our original problem is to compute OPT(n − 1, s). (We could

instead design an algorithm whose subproblems correspond to the minimum

cost of an s-v path using at most i edges. This would form a more natural

parallel with Dijkstra’s Algorithm, but it would not be as natural in the context

of the routing protocols we discuss later.)

We now need a simple way to express OPT(i, v) using smaller subproblems.

We will see that the most natural approach involves the consideration of

many different options; this is another example of the principle of “multi-

way choices” that we saw in the algorithm for the Segmented Least Squares

Problem.

Let’s fix an optimal path P representing OPT(i, v) as depicted in Figure 6.22.

. If the path P uses at most i − 1 edges, then OPT(i, v) = OPT(i − 1, v).

. If the path P uses i edges, and the first edge is (v, w), then OPT(i, v) =

cvw + OPT(i − 1, w).

This leads to the following recursive formula.

(6.23) If i > 0 then

OPT(i, v) = min(OPT(i − 1, v), min
w∈V

(OPT(i − 1, w) + cvw)).

Using this recurrence, we get the following dynamic programming algo-

rithm to compute the value OPT(n − 1, s).

294 Chapter 6 Dynamic Programming

8

–4 d

e

tb

6

–1 4

2

–2

–3

–3

3

a

c

4∞ 3 3 2 0

∞∞ 0 –2 –2 –2

3∞ 3 3 3 3

00 0 0 0 0

10 2 3 4 5

–3∞ –3 –4 –6 –6

2∞ 0 0 0 0

d

b

c

t

a

e

(b)

(a)

Figure 6.23 For the directed

graph in (a), the Shortest-

Path Algorithm constructs

the dynamic programming

table in (b).

Shortest-Path(G, s, t)

n = number of nodes in G

Array M[0 . . . n − 1, V]

Define M[0, t]= 0 and M[0, v]= ∞ for all other v ∈ V

For i = 1, . . . , n − 1

For v ∈ V in any order

Compute M[i, v] using the recurrence (6.23)

Endfor

Endfor

Return M[n − 1, s]

The correctness of the method follows directly by induction from (6.23).

We can bound the running time as follows. The table M has n2 entries; and

each entry can take O(n) time to compute, as there are at most n nodes w ∈ V

we have to consider.

(6.24) The Shortest-Pathmethod correctly computes the minimum cost of

an s-t path in any graph that has no negative cycles, and runs in O(n3) time.

Given the table M containing the optimal values of the subproblems, the

shortest path using at most i edges can be obtained in O(in) time, by tracing

back through smaller subproblems.

As an example, consider the graph in Figure 6.23(a), where the goal is to

find a shortest path from each node to t. The table in Figure 6.23(b) shows the

array M, with entries corresponding to the values M[i, v] from the algorithm.

Thus a single row in the table corresponds to the shortest path from a particular

node to t, as we allow the path to use an increasing number of edges. For

example, the shortest path from node d to t is updated four times, as it changes

from d-t, to d-a-t, to d-a-b-e-t, and finally to d-a-b-e-c-t.

Extensions: Some Basic Improvements to the Algorithm

An Improved Running-Time Analysis We can actually provide a better

running-time analysis for the case in which the graph G does not have too

many edges. A directed graph with n nodes can have close to n2 edges, since

there could potentially be an edge between each pair of nodes, but many

graphs are much sparser than this. When we work with a graph for which

the number of edges m is significantly less than n2, we’ve already seen in a

number of cases earlier in the book that it can be useful to write the running-

time in terms of both m and n; this way, we can quantify our speed-up on

graphs with relatively fewer edges.

6.8 Shortest Paths in a Graph 295

If we are a little more careful in the analysis of the method above, we can

improve the running-time bound to O(mn) without significantly changing the

algorithm itself.

(6.25) The Shortest-Path method can be implemented in O(mn) time.

Proof. Consider the computation of the array entry M[i, v] according to the

recurrence (6.23); we have

M[i, v]= min(M[i − 1, v], min
w∈V

(M[i − 1, w]+ cvw)).

We assumed it could take up to O(n) time to compute this minimum, since

there are n possible nodes w. But, of course, we need only compute this

minimum over all nodes w for which v has an edge to w; let us use nv to denote

this number. Then it takes time O(nv) to compute the array entry M[i, v]. We

have to compute an entry for every node v and every index 0 ≤ i ≤ n − 1, so

this gives a running-time bound of

O

(

n
∑

v∈V

nv

)

.

In Chapter 3, we performed exactly this kind of analysis for other graph

algorithms, and used (3.9) from that chapter to bound the expression
∑

v∈V nv

for undirected graphs. Here we are dealing with directed graphs, and nv denotes

the number of edges leaving v. In a sense, it is even easier to work out the

value of
∑

v∈V nv for the directed case: each edge leaves exactly one of the

nodes in V, and so each edge is counted exactly once by this expression. Thus

we have
∑

v∈V nv = m. Plugging this into our expression

O

(

n
∑

v∈V

nv

)

for the running time, we get a running-time bound of O(mn).

Improving the Memory Requirements We can also significantly improve the

memory requirements with only a small change to the implementation. A

common problem with many dynamic programming algorithms is the large

space usage, arising from the M array that needs to be stored. In the Bellman-

Ford Algorithm as written, this array has size n2; however, we now show how

to reduce this to O(n). Rather than recording M[i, v] for each value i, we will

use and update a single value M[v] for each node v, the length of the shortest

path from v to t that we have found so far. We still run the algorithm for

296 Chapter 6 Dynamic Programming

iterations i = 1, 2, . . . , n − 1, but the role of i will now simply be as a counter;

in each iteration, and for each node v, we perform the update

M[v]= min(M[v], min
w∈V

(cvw + M[w])).

We now observe the following fact.

(6.26) Throughout the algorithm M[v] is the length of some path from v to

t, and after i rounds of updates the value M[v] is no larger than the length of

the shortest path from v to t using at most i edges.

Given (6.26), we can then use (6.22) as before to show that we are done after

n − 1 iterations. Since we are only storing an M array that indexes over the

nodes, this requires only O(n) working memory.

Finding the Shortest Paths One issue to be concerned about is whether this

space-efficient version of the algorithm saves enough information to recover

the shortest paths themselves. In the case of the Sequence Alignment Problem

in the previous section, we had to resort to a tricky divide-and-conquer method

to recover the solution from a similar space-efficient implementation. Here,

however, we will be able to recover the shortest paths much more easily.

To help with recovering the shortest paths, we will enhance the code by

having each node v maintain the first node (after itself) on its path to the

destination t; we will denote this first node by first[v]. To maintain first[v],

we update its value whenever the distance M[v] is updated. In other words,

whenever the value of M[v] is reset to the minimum min
w∈V

(cvw + M[w]), we set

first[v] to the node w that attains this minimum.

Now let P denote the directed “pointer graph” whose nodes are V, and

whose edges are {(v, first[v])}. The main observation is the following.

(6.27) If the pointer graph P contains a cycle C, then this cycle must have

negative cost.

Proof. Notice that if first[v]= w at any time, then we must have M[v]≥

cvw + M[w]. Indeed, the left- and right-hand sides are equal after the update

that sets first[v] equal to w; and since M[w] may decrease, this equation may

turn into an inequality.

Let v1, v2, . . . , vk be the nodes along the cycle C in the pointer graph,

and assume that (vk, v1) is the last edge to have been added. Now, consider

the values right before this last update. At this time we have M[vi]≥ cvivi+1
+

M[vi+1] for all i = 1, . . . , k − 1, and we also have M[vk]> cvkv1
+ M[v1] since

we are about to update M[vk] and change first[vk] to v1. Adding all these

inequalities, the M[vi] values cancel, and we get 0 >
∑k−1

i=1 cvivi+1
+ cvkv1

: a

negative cycle, as claimed.

6.9 Shortest Paths and Distance Vector Protocols 297

Now note that if G has no negative cycles, then (6.27) implies that the

pointer graph P will never have a cycle. For a node v, consider the path we

get by following the edges in P, from v to first[v]= v1, to first[v1]= v2, and so

forth. Since the pointer graph has no cycles, and the sink t is the only node

that has no outgoing edge, this path must lead to t. We claim that when the

algorithm terminates, this is in fact a shortest path in G from v to t.

(6.28) Suppose G has no negative cycles, and consider the pointer graph P

at the termination of the algorithm. For each node v, the path in P from v to t

is a shortest v-t path in G.

Proof. Consider a node v and let w = first[v]. Since the algorithm terminated,

we must have M[v]= cvw + M[w]. The value M[t]= 0, and hence the length

of the path traced out by the pointer graph is exactly M[v], which we know is

the shortest-path distance.

Note that in the more space-efficient version of Bellman-Ford, the path

whose length is M[v] after i iterations can have substantially more edges than

i. For example, if the graph is a single path from s to t, and we perform updates

in the reverse of the order the edges appear on the path, then we get the final

shortest-path values in just one iteration. This does not always happen, so we

cannot claim a worst-case running-time improvement, but it would be nice to

be able to use this fact opportunistically to speed up the algorithm on instances

where it does happen. In order to do this, we need a stopping signal in the

algorithm—something that tells us it’s safe to terminate before iteration n − 1

is reached.

Such a stopping signal is a simple consequence of the following observa-

tion: If we ever execute a complete iteration i in which no M[v] value changes,

then no M[v] value will ever change again, since future iterations will begin

with exactly the same set of array entries. Thus it is safe to stop the algorithm.

Note that it is not enough for a particular M[v] value to remain the same; in

order to safely terminate, we need for all these values to remain the same for

a single iteration.

6.9 Shortest Paths and Distance Vector Protocols
One important application of the Shortest-Path Problem is for routers in a

communication network to determine the most efficient path to a destination.

We represent the network using a graph in which the nodes correspond to

routers, and there is an edge between v and w if the two routers are connected

by a direct communication link. We define a cost cvw representing the delay on

the link (v, w); the Shortest-Path Problem with these costs is to determine the

path with minimum delay from a source node s to a destination t. Delays are

298 Chapter 6 Dynamic Programming

naturally nonnegative, so one could use Dijkstra’s Algorithm to compute the

shortest path. However, Dijkstra’s shortest-path computation requires global

knowledge of the network: it needs to maintain a set S of nodes for which

shortest paths have been determined, and make a global decision about which

node to add next to S. While routers can be made to run a protocol in the

background that gathers enough global information to implement such an

algorithm, it is often cleaner and more flexible to use algorithms that require

only local knowledge of neighboring nodes.

If we think about it, the Bellman-Ford Algorithm discussed in the previous

section has just such a “local” property. Suppose we let each node v maintain

its value M[v]; then to update this value, v needs only obtain the value M[w]

from each neighbor w, and compute

min
w∈V

(cvw + M[w])

based on the information obtained.

We now discuss an improvement to the Bellman-Ford Algorithm that

makes it better suited for routers and, at the same time, a faster algorithm

in practice. Our current implementation of the Bellman-Ford Algorithm can be

thought of as a pull-based algorithm. In each iteration i, each node v has to

contact each neighbor w, and “pull” the new value M[w] from it. If a node w

has not changed its value, then there is no need for v to get the value again;

however, v has no way of knowing this fact, and so it must execute the pull

anyway.

This wastefulness suggests a symmetric push-based implementation,

where values are only transmitted when they change. Specifically, each node

w whose distance value M[w] changes in an iteration informs all its neighbors

of the new value in the next iteration; this allows them to update their values

accordingly. If M[w] has not changed, then the neighbors of w already have

the current value, and there is no need to “push” it to them again. This leads

to savings in the running time, as not all values need to be pushed in each iter-

ation. We also may terminate the algorithm early, if no value changes during

an iteration. Here is a concrete description of the push-based implementation.

Push-Based-Shortest-Path(G, s, t)

n = number of nodes in G

Array M[V]

Initialize M[t]= 0 and M[v]= ∞ for all other v ∈ V

For i = 1, . . . , n − 1

For w ∈ V in any order

If M[w] has been updated in the previous iteration then

6.9 Shortest Paths and Distance Vector Protocols 299

For all edges (v, w) in any order

M[v]= min(M[v], cvw + M[w])

If this changes the value of M[v], then first[v]= w

Endfor

Endfor

If no value changed in this iteration, then end the algorithm

Endfor

Return M[s]

In this algorithm, nodes are sent updates of their neighbors’ distance

values in rounds, and each node sends out an update in each iteration in which

it has changed. However, if the nodes correspond to routers in a network, then

we do not expect everything to run in lockstep like this; some routers may

report updates much more quickly than others, and a router with an update to

report may sometimes experience a delay before contacting its neighbors. Thus

the routers will end up executing an asynchronous version of the algorithm:

each time a node w experiences an update to its M[w] value, it becomes

“active” and eventually notifies its neighbors of the new value. If we were

to watch the behavior of all routers interleaved, it would look as follows.

Asynchronous-Shortest-Path(G, s, t)

n = number of nodes in G

Array M[V]

Initialize M[t]= 0 and M[v]= ∞ for all other v ∈ V

Declare t to be active and all other nodes inactive

While there exists an active node

Choose an active node w

For all edges (v, w) in any order

M[v]= min(M[v], cvw + M[w])

If this changes the value of M[v], then

first[v]= w

v becomes active

Endfor

w becomes inactive

EndWhile

One can show that even this version of the algorithm, with essentially no

coordination in the ordering of updates, will converge to the correct values of

the shortest-path distances to t, assuming only that each time a node becomes

active, it eventually contacts its neighbors.

The algorithm we have developed here uses a single destination t, and

all nodes v ∈ V compute their shortest path to t. More generally, we are

300 Chapter 6 Dynamic Programming

presumably interested in finding distances and shortest paths between all pairs

of nodes in a graph. To obtain such distances, we effectively use n separate

computations, one for each destination. Such an algorithm is referred to as

a distance vector protocol, since each node maintains a vector of distances to

every other node in the network.

Problems with the Distance Vector Protocol

One of the major problems with the distributed implementation of Bellman-

Ford on routers (the protocol we have been discussing above) is that it’s derived

from an initial dynamic programming algorithm that assumes edge costs will

remain constant during the execution of the algorithm. Thus far we’ve been

designing algorithms with the tacit understanding that a program executing

the algorithm will be running on a single computer (or a centrally managed

set of computers), processing some specified input. In this context, it’s a rather

benign assumption to require that the input not change while the program is

actually running. Once we start thinking about routers in a network, however,

this assumption becomes troublesome. Edge costs may change for all sorts of

reasons: links can become congested and experience slow-downs; or a link

(v, w) may even fail, in which case the cost cvw effectively increases to ∞.

Here’s an indication of what can go wrong with our shortest-path algo-

rithm when this happens. If an edge (v, w) is deleted (say the link goes down),

it is natural for node v to react as follows: it should check whether its shortest

path to some node t used the edge (v, w), and, if so, it should increase the

distance using other neighbors. Notice that this increase in distance from v can

now trigger increases at v’s neighbors, if they were relying on a path through v,

and these changes can cascade through the network. Consider the extremely

simple example in Figure 6.24, in which the original graph has three edges

(s, v), (v, s) and (v, t), each of cost 1.

Now suppose the edge (v, t) in Figure 6.24 is deleted. How does node v

react? Unfortunately, it does not have a global map of the network; it only

knows the shortest-path distances of each of its neighbors to t. Thus it does

s v t
1 1

1 Deleted

The deleted edge causes an unbounded

sequence of updates by s and v.

Figure 6.24 When the edge (v, t) is deleted, the distributed Bellman-Ford Algorithm

will begin “counting to infinity.”

6.10 Negative Cycles in a Graph 301

not know that the deletion of (v, t) has eliminated all paths from s to t. Instead,

it sees that M[s]= 2, and so it updates M[v]= cvs + M[s]= 3, assuming that

it will use its cost-1 edge to s, followed by the supposed cost-2 path from s

to t. Seeing this change, node s will update M[s]= csv + M[v]= 4, based on

its cost-1 edge to v, followed by the supposed cost-3 path from v to t. Nodes

s and v will continue updating their distance to t until one of them finds an

alternate route; in the case, as here, that the network is truly disconnected,

these updates will continue indefinitely—a behavior known as the problem of

counting to infinity.

To avoid this problem and related difficulties arising from the limited

amount of information available to nodes in the Bellman-Ford Algorithm, the

designers of network routing schemes have tended to move from distance

vector protocols to more expressive path vector protocols, in which each node

stores not just the distance and first hop of their path to a destination, but

some representation of the entire path. Given knowledge of the paths, nodes

can avoid updating their paths to use edges they know to be deleted; at the

same time, they require significantly more storage to keep track of the full

paths. In the history of the Internet, there has been a shift from distance vector

protocols to path vector protocols; currently, the path vector approach is used

in the Border Gateway Protocol (BGP) in the Internet core.

* 6.10 Negative Cycles in a Graph
So far in our consideration of the Bellman-Ford Algorithm, we have assumed

that the underlying graph has negative edge costs but no negative cycles. We

now consider the more general case of a graph that may contain negative

cycles.

The Problem

There are two natural questions we will consider.

. How do we decide if a graph contains a negative cycle?

. How do we actually find a negative cycle in a graph that contains one?

The algorithm developed for finding negative cycles will also lead to an

improved practical implementation of the Bellman-Ford Algorithm from the

previous sections.

It turns out that the ideas we’ve seen so far will allow us to find negative

cycles that have a path reaching a sink t. Before we develop the details of this,

let’s compare the problem of finding a negative cycle that can reach a given t

with the seemingly more natural problem of finding a negative cycle anywhere

in the graph, regardless of its position related to a sink. It turns out that if we

302 Chapter 6 Dynamic Programming

t

G

Any negative cycle in G will be able to reach t.

Figure 6.25 The augmented graph.

develop a solution to the first problem, we’ll be able to obtain a solution to

the second problem as well, in the following way. Suppose we start with a

graph G, add a new node t to it, and connect each other node v in the graph

to node t via an edge of cost 0, as shown in Figure 6.25. Let us call the new

“augmented graph” G′.

(6.29) The augmented graph G′ has a negative cycle C such that there is a

path from C to the sink t if and only if the original graph has a negative cycle.

Proof. Assume G has a negative cycle. Then this cycle C clearly has an edge

to t in G′, since all nodes have an edge to t.

Now suppose G′ has a negative cycle with a path to t. Since no edge leaves

t in G′, this cycle cannot contain t. Since G′ is the same as G aside from the

node t, it follows that this cycle is also a negative cycle of G.

So it is really enough to solve the problem of deciding whether G has a

negative cycle that has a path to a given sink node t, and we do this now.

Designing and Analyzing the Algorithm

To get started thinking about the algorithm, we begin by adopting the original

version of the Bellman-Ford Algorithm, which was less efficient in its use

of space. We first extend the definitions of OPT(i, v) from the Bellman-Ford

Algorithm, defining them for values i ≥ n. With the presence of a negative

cycle in the graph, (6.22) no longer applies, and indeed the shortest path may

6.10 Negative Cycles in a Graph 303

get shorter and shorter as we go around a negative cycle. In fact, for any node

v on a negative cycle that has a path to t, we have the following.

(6.30) If node v can reach node t and is contained in a negative cycle, then

lim
i→∞

OPT(i, v) = −∞.

If the graph has no negative cycles, then (6.22) implies following statement.

(6.31) If there are no negative cycles in G, then OPT(i, v) = OPT(n − 1, v) for

all nodes v and all i ≥ n.

But for how large an i do we have to compute the values OPT(i, v) before

concluding that the graph has no negative cycles? For example, a node v may

satisfy the equation OPT(n, v) = OPT(n − 1, v), and yet still lie on a negative

cycle. (Do you see why?) However, it turns out that we will be in good shape

if this equation holds for all nodes.

(6.32) There is no negative cycle with a path to t if and only if OPT(n, v) =

OPT(n − 1, v) for all nodes v.

Proof. Statement (6.31) has already proved the forward direction. For the other

direction, we use an argument employed earlier for reasoning about when it’s

safe to stop the Bellman-Ford Algorithm early. Specifically, suppose OPT(n, v) =

OPT(n − 1, v) for all nodes v. The values of OPT(n + 1, v) can be computed

from OPT(n, v); but all these values are the same as the corresponding OPT(n −

1, v). It follows that we will have OPT(n + 1, v) = OPT(n − 1, v). Extending this

reasoning to future iterations, we see that none of the values will ever change

again, that is, OPT(i, v) = OPT(n − 1, v) for all nodes v and all i ≥ n. Thus there

cannot be a negative cycle C that has a path to t; for any node w on this cycle

C, (6.30) implies that the values OPT(i, w) would have to become arbitrarily

negative as i increased.

Statement (6.32) gives an O(mn) method to decide if G has a negative

cycle that can reach t. We compute values of OPT(i, v) for nodes of G and for

values of i up to n. By (6.32), there is no negative cycle if and only if there is

some value of i ≤ n at which OPT(i, v) = OPT(i − 1, v) for all nodes v.

So far we have determined whether or not the graph has a negative cycle

with a path from the cycle to t, but we have not actually found the cycle. To

find a negative cycle, we consider a node v such that OPT(n, v) �= OPT(n − 1, v):

for this node, a path P from v to t of cost OPT(n, v) must use exactly n edges.

We find this minimum-cost path P from v to t by tracing back through the

subproblems. As in our proof of (6.22), a simple path can only have n − 1

304 Chapter 6 Dynamic Programming

edges, so P must contain a cycle C. We claim that this cycle C has negative

cost.

(6.33) If G has n nodes and OPT(n, v) �= OPT(n − 1, v), then a path P from v

to t of cost OPT(n, v) contains a cycle C, and C has negative cost.

Proof. First observe that the path P must have n edges, as OPT(n, v) �= OPT(n −

1, v), and so every path using n − 1 edges has cost greater than that of the

path P. In a graph with n nodes, a path consisting of n edges must repeat

a node somewhere; let w be a node that occurs on P more than once. Let C

be the cycle on P between two consecutive occurrences of node w. If C were

not a negative cycle, then deleting C from P would give us a v-t path with

fewer than n edges and no greater cost. This contradicts our assumption that

OPT(n, v) �= OPT(n − 1, v), and hence C must be a negative cycle.

(6.34) The algorithm above finds a negative cycle in G, if such a cycle exists,

and runs in O(mn) time.

Extensions: Improved Shortest Paths and Negative Cycle
Detection Algorithms

At the end of Section 6.8 we discussed a space-efficient implementation of the

Bellman-Ford algorithm for graphs with no negative cycles. Here we implement

the detection of negative cycles in a comparably space-efficient way. In addition

to the savings in space, this will also lead to a considerable speedup in practice

even for graphs with no negative cycles. The implementation will be based on

the same pointer graph P derived from the “first edges” (v, first[v]) that we

used for the space-efficient implementation in Section 6.8. By (6.27), we know

that if the pointer graph ever has a cycle, then the cycle has negative cost, and

we are done. But if G has a negative cycle, does this guarantee that the pointer

graph will ever have a cycle? Furthermore, how much extra computation time

do we need for periodically checking whether P has a cycle?

Ideally, we would like to determine whether a cycle is created in the pointer

graph P every time we add a new edge (v, w) with first[v]= w. An additional

advantage of such “instant” cycle detection will be that we will not have to wait

for n iterations to see that the graph has a negative cycle: We can terminate

as soon as a negative cycle is found. Earlier we saw that if a graph G has no

negative cycles, the algorithm can be stopped early if in some iteration the

shortest path values M[v] remain the same for all nodes v. Instant negative

cycle detection will be an analogous early termination rule for graphs that

have negative cycles.

6.10 Negative Cycles in a Graph 305

Consider a new edge (v, w), with first[v]= w, that is added to the pointer

graph P. Before we add (v, w) the pointer graph has no cycles, so it consists of

paths from each node v to the sink t. The most natural way to check whether

adding edge (v, w) creates a cycle in P is to follow the current path from w to

the terminal t in time proportional to the length of this path. If we encounter

v along this path, then a cycle has been formed, and hence, by (6.27), the

graph has a negative cycle. Consider Figure 6.26, for example, where in both

(a) and (b) the pointer first[v] is being updated from u to w; in (a), this does

not result in a (negative) cycle, but in (b) it does. However, if we trace out the

sequence of pointers from v like this, then we could spend as much as O(n)

time following the path to t and still not find a cycle. We now discuss a method

that does not require an O(n) blow-up in the running time.

We know that before the new edge (v, w) was added, the pointer graph

was a directed tree. Another way to test whether the addition of (v, w) creates

a cycle is to consider all nodes in the subtree directed toward v. If w is in this

subtree, then (v, w) forms a cycle; otherwise it does not. (Again, consider the

two sample cases in Figure 6.26.) To be able to find all nodes in the subtree

directed toward v, we need to have each node v maintain a list of all other

nodes whose selected edges point to v. Given these pointers, we can find

the subtree in time proportional to the size of the subtree pointing to v, at

most O(n) as before. However, here we will be able to make additional use

of the work done. Notice that the current distance value M[x] for all nodes x

in the subtree was derived from node v’s old value. We have just updated v’s

distance, and hence we know that the distance values of all these nodes will

be updated again. We’ll mark each of these nodes x as “dormant,” delete the

t

v

w

u

Update to
f irst[v] = w

t

w

v u

Update to
f irst[v] = w

(a) (b)

Figure 6.26 Changing the pointer graph P when first[v] is updated from u to w. In (b),

this creates a (negative) cycle, whereas in (a) it does not.

306 Chapter 6 Dynamic Programming

edge (x, first[x]) from the pointer graph, and not use x for future updates until

its distance value changes.

This can save a lot of future work in updates, but what is the effect on the

worst-case running time? We can spend as much as O(n) extra time marking

nodes dormant after every update in distances. However, a node can be marked

dormant only if a pointer had been defined for it at some point in the past, so

the time spent on marking nodes dormant is at most as much as the time the

algorithm spends updating distances.

Now consider the time the algorithm spends on operations other than

marking nodes dormant. Recall that the algorithm is divided into iterations,

where iteration i + 1 processes nodes whose distance has been updated in

iteration i. For the original version of the algorithm, we showed in (6.26) that

after i iterations, the value M[v] is no larger than the value of the shortest path

from v to t using at most i edges. However, with many nodes dormant in each

iteration, this may not be true anymore. For example, if the shortest path from

v to t using at most i edges starts on edge e = (v, w), and w is dormant in

this iteration, then we may not update the distance value M[v], and so it stays

at a value higher than the length of the path through the edge (v, w). This

seems like a problem—however, in this case, the path through edge (v, w) is

not actually the shortest path, so M[v] will have a chance to get updated later

to an even smaller value.

So instead of the simpler property that held for M[v]in the original versions

of the algorithm, we now have the the following claim.

(6.35) Throughout the algorithm M[v] is the length of some simple path from

v to t; the path has at least i edges if the distance value M[v] is updated in

iteration i; and after i iterations, the value M[v] is the length of the shortest

path for all nodes v where there is a shortest v-t path using at most i edges.

Proof. The first pointers maintain a tree of paths to t, which implies that all

paths used to update the distance values are simple. The fact that updates in

iteration i are caused by paths with at least i edges is easy to show by induction

on i. Similarly, we use induction to show that after iteration i the value M[v]

is the distance on all nodes v where the shortest path from v to t uses at most

i edges. Note that nodes v where M[v] is the actual shortest-path distance

cannot be dormant, as the value M[v] will be updated in the next iteration for

all dormant nodes.

Using this claim, we can see that the worst-case running time of the

algorithm is still bounded by O(mn): Ignoring the time spent on marking

nodes dormant, each iteration is implemented in O(m) time, and there can

be at most n − 1 iterations that update values in the array M without finding

Solved Exercises 307

a negative cycle, as simple paths can have at most n − 1 edges. Finally, the

time spent marking nodes dormant is bounded by the time spent on updates.

We summarize the discussion with the following claim about the worst-case

performance of the algorithm. In fact, as mentioned above, this new version

is in practice the fastest implementation of the algorithm even for graphs that

do not have negative cycles, or even negative-cost edges.

(6.36) The improved algorithm outlined above finds a negative cycle in G if

such a cycle exists. It terminates immediately if the pointer graph P of first[v]

pointers contains a cycle C, or if there is an iteration in which no update occurs

to any distance value M[v]. The algorithm uses O(n) space, has at most n

iterations, and runs in O(mn) time in the worst case.

Solved Exercises

Solved Exercise 1

Suppose you are managing the construction of billboards on the Stephen

Daedalus Memorial Highway, a heavily traveled stretch of road that runs

west-east for M miles. The possible sites for billboards are given by numbers

x1, x2, . . . , xn, each in the interval [0, M] (specifying their position along the

highway, measured in miles from its western end). If you place a billboard at

location xi, you receive a revenue of ri > 0.

Regulations imposed by the county’s Highway Department require that

no two of the billboards be within less than or equal to 5 miles of each other.

You’d like to place billboards at a subset of the sites so as to maximize your

total revenue, subject to this restriction.

Example. Suppose M = 20, n = 4,

{x1, x2, x3, x4} = {6, 7, 12, 14},

and

{r1, r2, r3, r4} = {5, 6, 5, 1}.

Then the optimal solution would be to place billboards at x1 and x3, for a total

revenue of 10.

Give an algorithm that takes an instance of this problem as input and

returns the maximum total revenue that can be obtained from any valid subset

of sites. The running time of the algorithm should be polynomial in n.

Solution We can naturally apply dynamic programming to this problem if

we reason as follows. Consider an optimal solution for a given input instance;

in this solution, we either place a billboard at site xn or not. If we don’t, the

optimal solution on sites x1, . . . , xn is really the same as the optimal solution

308 Chapter 6 Dynamic Programming

on sites x1, . . . , xn−1; if we do, then we should eliminate xn and all other sites

that are within 5 miles of it, and find an optimal solution on what’s left. The

same reasoning applies when we’re looking at the problem defined by just the

first j sites, x1, . . . , xj: we either include xj in the optimal solution or we don’t,

with the same consequences.

Let’s define some notation to help express this. For a site xj, we let e(j)

denote the easternmost site xi that is more than 5 miles from xj. Since sites

are numbered west to east, this means that the sites x1, x2, . . . , xe(j) are still

valid options once we’ve chosen to place a billboard at xj, but the sites

xe(j)+1, . . . , xj−1 are not.

Now, our reasoning above justifies the following recurrence. If we let OPT(j)

denote the revenue from the optimal subset of sites among x1, . . . , xj, then we

have

OPT(j) = max(rj + OPT(e(j)), OPT(j − 1)).

We now have most of the ingredients we need for a dynamic programming

algorithm. First, we have a set of n subproblems, consisting of the first j sites

for j = 0, 1, 2, . . . , n. Second, we have a recurrence that lets us build up the

solutions to subproblems, given by OPT(j) = max(rj + OPT(e(j)), OPT(j − 1)).

To turn this into an algorithm, we just need to define an array M that will

store the OPT values and throw a loop around the recurrence that builds up

the values M[j] in order of increasing j.

Initialize M[0]= 0 and M[1]= r1

For j = 2, 3, . . . , n:

Compute M[j] using the recurrence

Endfor

Return M[n]

As with all the dynamic programming algorithms we’ve seen in this chapter,

an optimal set of billboards can be found by tracing back through the values

in array M.

Given the values e(j) for all j, the running time of the algorithm is O(n),

since each iteration of the loop takes constant time. We can also compute all e(j)

values in O(n) time as follows. For each site location xi, we define x′
i = xi − 5.

We then merge the sorted list x1, . . . , xn with the sorted list x′
1, . . . , x′

n in linear

time, as we saw how to do in Chapter 2. We now scan through this merged list;

when we get to the entry x′
j, we know that anything from this point onward

to xj cannot be chosen together with xj (since it’s within 5 miles), and so we

Solved Exercises 309

simply define e(j) to be the largest value of i for which we’ve seen xi in our

scan.

Here’s a final observation on this problem. Clearly, the solution looks

very much like that of the Weighted Interval Scheduling Problem, and there’s

a fundamental reason for that. In fact, our billboard placement problem

can be directly encoded as an instance of Weighted Interval Scheduling, as

follows. Suppose that for each site xi, we define an interval with endpoints

[xi − 5, xi] and weight ri. Then, given any nonoverlapping set of intervals, the

corresponding set of sites has the property that no two lie within 5 miles of

each other. Conversely, given any such set of sites (no two within 5 miles), the

intervals associated with them will be nonoverlapping. Thus the collections

of nonoverlapping intervals correspond precisely to the set of valid billboard

placements, and so dropping the set of intervals we’ve just defined (with their

weights) into an algorithm for Weighted Interval Scheduling will yield the

desired solution.

Solved Exercise 2

Through some friends of friends, you end up on a consulting visit to the

cutting-edge biotech firm Clones ‘R’ Us (CRU). At first you’re not sure how

your algorithmic background will be of any help to them, but you soon find

yourself called upon to help two identical-looking software engineers tackle a

perplexing problem.

The problem they are currently working on is based on the concatenation

of sequences of genetic material. If X and Y are each strings over a fixed

alphabet S, then XY denotes the string obtained by concatenating them—

writing X followed by Y. CRU has identified a target sequence A of genetic

material, consisting of m symbols, and they want to produce a sequence that

is as similar to A as possible. For this purpose, they have a library L consisting

of k (shorter) sequences, each of length at most n. They can cheaply produce

any sequence consisting of copies of the strings in L concatenated together

(with repetitions allowed).

Thus we say that a concatenation over L is any sequence of the form

B1B2
. . . Bℓ, where each Bi belongs the set L. (Again, repetitions are allowed,

so Bi and Bj could be the same string in L, for different values of i and j.)

The problem is to find a concatenation over {Bi} for which the sequence

alignment cost is as small as possible. (For the purpose of computing the

sequence alignment cost, you may assume that you are given a gap cost δ and

a mismatch cost αpq for each pair p, q ∈ S.)

Give a polynomial-time algorithm for this problem.

310 Chapter 6 Dynamic Programming

Solution This problem is vaguely reminiscent of Segmented Least Squares:

we have a long sequence of “data” (the string A) that we want to “fit” with

shorter segments (the strings in L).

If we wanted to pursue this analogy, we could search for a solution as

follows. Let B = B1B2
. . . Bℓ denote a concatenation over L that aligns as well

as possible with the given string A. (That is, B is an optimal solution to the

input instance.) Consider an optimal alignment M of A with B, let t be the first

position in A that is matched with some symbol in Bℓ, and let Aℓ denote the

substring of A from position t to the end. (See Figure 6.27 for an illustration

of this with ℓ = 3.) Now, the point is that in this optimal alignment M, the

substring Aℓ is optimally aligned with Bℓ; indeed, if there were a way to better

align Aℓ with Bℓ, we could substitute it for the portion of M that aligns Aℓ with

Bℓ and obtain a better overall alignment of A with B.

This tells us that we can look at the optimal solution as follows. There’s

some final piece of Aℓ that is aligned with one of the strings in L, and for this

piece all we’re doing is finding the string in L that aligns with it as well as

possible. Having found this optimal alignment for Aℓ, we can break it off and

continue to find the optimal solution for the remainder of A.

Thinking about the problem this way doesn’t tell us exactly how to

proceed—we don’t know how long Aℓ is supposed to be, or which string in

L it should be aligned with. But this is the kind of thing we can search over

in a dynamic programming algorithm. Essentially, we’re in about the same

spot we were in with the Segmented Least Squares Problem: there we knew

that we had to break off some final subsequence of the input points, fit them

as well as possible with one line, and then iterate on the remaining input

points.

So let’s set up things to make the search for Aℓ possible. First, let A[x : y]

denote the substring of A consisting of its symbols from position x to position

y, inclusive. Let c(x, y) denote the cost of the optimal alignment of A[x :y]with

any string in L. (That is, we search over each string in L and find the one that

A3A

B1

t

B2 B3

Figure 6.27 In the optimal concatentation of strings to align with A, there is a final

string (B3 in the figure) that aligns with a substring of A (A3 in the figure) that extends

from some position t to the end.

Solved Exercises 311

aligns best with A[x : y].) Let OPT(j) denote the alignment cost of the optimal

solution on the string A[1 : j].

The argument above says that an optimal solution on A[1 : j] consists of

identifying a final “segment boundary” t < j, finding the optimal alignment

of A[t : j] with a single string in L, and iterating on A[1 : t − 1]. The cost of

this alignment of A[t : j] is just c(t , j), and the cost of aligning with what’s left

is just OPT(t − 1). This suggests that our subproblems fit together very nicely,

and it justifies the following recurrence.

(6.37) OPT(j) = mint<j c(t , j) + OPT(t − 1) for j ≥ 1, and OPT(0) = 0.

The full algorithm consists of first computing the quantities c(t , j), for t < j,

and then building up the values OPT(j) in order of increasing j. We hold these

values in an array M.

Set M[0]= 0

For all pairs 1≤ t ≤ j ≤ m

Compute the cost c(t , j) as follows:

For each string B ∈ L

Compute the optimal alignment of B with A[t : j]

Endfor

Choose the B that achieves the best alignment, and use

this alignment cost as c(t , j)

Endfor

For j = 1, 2, . . . , n

Use the recurrence (6.37) to compute M[j]

Endfor

Return M[n]

As usual, we can get a concatentation that achieves it by tracing back over

the array of OPT values.

Let’s consider the running time of this algorithm. First, there are O(m2)

values c(t , j) that need to be computed. For each, we try each string of the

k strings B ∈ L, and compute the optimal alignment of B with A[t : j] in

time O(n(j − t)) = O(mn). Thus the total time to compute all c(t , j) values

is O(km3n).

This dominates the time to compute all OPT values: Computing OPT(j) uses

the recurrence in (6.37), and this takes O(m) time to compute the minimum.

Summing this over all choices of j = 1, 2, . . . , m, we get O(m2) time for this

portion of the algorithm.

312 Chapter 6 Dynamic Programming

Exercises

1. Let G = (V , E) be an undirected graph with n nodes. Recall that a subset

of the nodes is called an independent set if no two of them are joined by

an edge. Finding large independent sets is difficult in general; but here

we’ll see that it can be done efficiently if the graph is “simple” enough.

Call a graphG = (V , E) a path if its nodes can bewritten as v1, v2, . . . , vn,

with an edge between vi and vj if and only if the numbers i and j differ by

exactly 1. With each node vi, we associate a positive integer weight wi.

Consider, for example, the five-node path drawn in Figure 6.28. The

weights are the numbers drawn inside the nodes.

The goal in this question is to solve the following problem:

Find an independent set in a path G whose total weight is as large as possible.

(a) Give an example to show that the following algorithm does not always

find an independent set of maximum total weight.

The "heaviest-first" greedy algorithm

Start with S equal to the empty set

While some node remains in G

Pick a node vi of maximum weight

Add vi to S

Delete vi and its neighbors from G

Endwhile

Return S

(b) Give an example to show that the following algorithm also does not

always find an independent set of maximum total weight.

Let S1 be the set of all vi where i is an odd number

Let S2 be the set of all vi where i is an even number

(Note that S1 and S2 are both independent sets)

Determine which of S1 or S2 has greater total weight,

and return this one

1 8 6 3 6

Figure 6.28 Apaths with weights on the nodes. Themaximumweight of an independent

set is 14.

Exercises 313

(c) Give an algorithm that takes an n-node path G with weights and

returns an independent set of maximum total weight. The running

time should be polynomial in n, independent of the values of the

weights.

2. Suppose you’re managing a consulting team of expert computer hackers,

and each week you have to choose a job for them to undertake. Now, as

you can well imagine, the set of possible jobs is divided into those that

are low-stress (e.g., setting up aWeb site for a class at the local elementary

school) and those that are high-stress (e.g., protecting the nation’s most

valuable secrets, or helping a desperate group of Cornell students finish

a project that has something to do with compilers). The basic question,

each week, is whether to take on a low-stress job or a high-stress job.

If you select a low-stress job for your team in week i, then you get a

revenue of ℓi > 0 dollars; if you select a high-stress job, you get a revenue

of hi > 0 dollars. The catch, however, is that in order for the team to take

on a high-stress job in week i, it’s required that they do no job (of either

type) in week i − 1; they need a full week of prep time to get ready for the

crushing stress level. On the other hand, it’s okay for them to take a low-

stress job in week i even if they have done a job (of either type) in week

i − 1.

So, given a sequence of n weeks, a plan is specified by a choice of

“low-stress,” “high-stress,” or “none” for each of the n weeks, with the

property that if “high-stress” is chosen for week i > 1, then “none” has to

be chosen for week i − 1. (It’s okay to choose a high-stress job in week 1.)

The value of the plan is determined in the natural way: for each i, you

add ℓi to the value if you choose “low-stress” in week i, and you add hi to

the value if you choose “high-stress” in week i. (You add 0 if you choose

“none” in week i.)

The problem. Given sets of values ℓ1, ℓ2, . . . , ℓn and h1, h2, . . . , hn, find a

plan of maximum value. (Such a plan will be called optimal .)

Example. Suppose n = 4, and the values of ℓi and hi are given by the

following table. Then the plan of maximum value would be to choose

“none” in week 1, a high-stress job in week 2, and low-stress jobs in weeks

3 and 4. The value of this plan would be 0 + 50 + 10 + 10 = 70.

Week 1 Week 2 Week 3 Week 4

ℓ 10 1 10 10

h 5 50 5 1

314 Chapter 6 Dynamic Programming

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

For iterations i = 1 to n

If hi+1 > ℓi + ℓi+1 then

Output "Choose no job in week i"

Output "Choose a high-stress job in week i + 1"

Continue with iteration i + 2

Else

Output "Choose a low-stress job in week i"

Continue with iteration i + 1

Endif

End

To avoid problems with overflowing array bounds, we define

hi = ℓi = 0 when i > n.

In your example, say what the correct answer is and also what

the above algorithm finds.

(b) Give an efficient algorithm that takes values for ℓ1, ℓ2, . . . , ℓn and

h1, h2, . . . , hn and returns the value of an optimal plan.

3. Let G = (V , E) be a directed graph with nodes v1, . . . , vn. We say that G is

an ordered graph if it has the following properties.

(i) Each edge goes from a node with a lower index to a node with a higher

index. That is, every directed edge has the form (vi, vj) with i < j.

(ii) Each node except vn has at least one edge leaving it. That is, for every

node vi, i = 1, 2, . . . , n − 1, there is at least one edge of the form (vi, vj).

The length of a path is the number of edges in it. The goal in this

question is to solve the following problem (see Figure 6.29 for an exam-

ple).

Given an ordered graph G, find the length of the longest path that begins at

v1 and ends at vn.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an example of an ordered graph on which it does

not return the correct answer.

Set w = v1

Set L = 0

Exercises 315

v3 v4 v5v1 v2

Figure 6.29 The correct answer for this ordered graph is 3: The longest path from v1 to

vn uses the three edges (v1, v2),(v2, v4), and (v4, v5).

While there is an edge out of the node w

Choose the edge (w, vj)

for which j is as small as possible

Set w = vj

Increase L by 1

end while

Return L as the length of the longest path

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an efficient algorithm that takes an ordered graph G and returns

the length of the longest path that begins at v1 and ends at vn. (Again,

the length of a path is the number of edges in the path.)

4. Suppose you’re running a lightweight consulting business—just you, two

associates, and some rented equipment. Your clients are distributed

between the East Coast and theWest Coast, and this leads to the following

question.

Each month, you can either run your business from an office in New

York (NY) or from an office in San Francisco (SF). In month i, you’ll incur

an operating cost of Ni if you run the business out of NY; you’ll incur an

operating cost of Si if you run the business out of SF. (It depends on the

distribution of client demands for that month.)

However, if you run the business out of one city in month i, and then

out of the other city in month i + 1, then you incur a fixed moving cost of

M to switch base offices.

Given a sequence of n months, a plan is a sequence of n locations—

each one equal to either NY or SF—such that the ith location indicates the

city in which you will be based in the ith month. The cost of a plan is the

sum of the operating costs for each of the n months, plus a moving cost

of M for each time you switch cities. The plan can begin in either city.

316 Chapter 6 Dynamic Programming

The problem. Given a value for the moving cost M, and sequences of

operating costs N1, . . . , Nn and S1, . . . , Sn, find a plan of minimum cost.

(Such a plan will be called optimal .)

Example. Suppose n = 4, M = 10, and the operating costs are given by the

following table.

Month 1 Month 2 Month 3 Month 4

NY 1 3 20 30

SF 50 20 2 4

Then the plan of minimum cost would be the sequence of locations

[NY , NY , SF , SF],

with a total cost of 1+ 3+ 2 + 4 + 10 = 20, where the final term of 10 arises

because you change locations once.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

For i = 1 to n

If Ni < Si then

Output "NY in Month i"

Else

Output "SF in Month i"

End

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an example of an instance in which every optimal plan must

move (i.e., change locations) at least three times.

Provide a brief explanation, saying why your example has this

property.

(c) Give an efficient algorithm that takes values for n, M, and sequences

of operating costs N1, . . . , Nn and S1, . . . , Sn, and returns the cost of

an optimal plan.

5. As some of you know well, and others of you may be interested to learn,

a number of languages (including Chinese and Japanese) are written

without spaces between the words. Consequently, software that works

with text written in these languages must address theword segmentation

problem—inferring likely boundaries between consecutive words in the

Exercises 317

text. If Englishwere writtenwithout spaces, the analogous problemwould

consist of taking a string like “meetateight” and deciding that the best

segmentation is “meet at eight” (and not “me et at eight,” or “meet ate

ight,” or any of a huge number of even less plausible alternatives). How

could we automate this process?

A simple approach that is at least reasonably effective is to find a

segmentation that simply maximizes the cumulative “quality” of its indi-

vidual constituent words. Thus, suppose you are given a black box that,

for any string of letters x = x1x2
. . . xk, will return a number quality(x). This

number can be either positive or negative; larger numbers correspond to

more plausible English words. (So quality(“me”) would be positive, while

quality(“ght”) would be negative.)

Given a long string of letters y = y1y2
. . . yn, a segmentation of y is a

partition of its letters into contiguous blocks of letters; each block corre-

sponds to a word in the segmentation. The total quality of a segmentation

is determined by adding up the qualities of each of its blocks. (So we’d

get the right answer above provided that quality(“meet”) + quality(“at”) +

quality(“eight”) was greater than the total quality of any other segmenta-

tion of the string.)

Give an efficient algorithm that takes a string y and computes a

segmentation of maximum total quality. (You can treat a single call to

the black box computing quality(x) as a single computational step.)

(A final note, not necessary for solving the problem: To achieve better

performance, word segmentation software in practice works with a more

complex formulation of the problem—for example, incorporating the

notion that solutions should not only be reasonable at the word level, but

also form coherent phrases and sentences. If we consider the example

“theyouthevent,” there are at least three valid ways to segment this

into common English words, but one constitutes a much more coherent

phrase than the other two. If we think of this in the terminology of formal

languages, this broader problem is like searching for a segmentation

that also can be parsed well according to a grammar for the underlying

language. But evenwith these additional criteria and constraints, dynamic

programming approaches lie at the heart of a number of successful

segmentation systems.)

6. In a word processor, the goal of “pretty-printing” is to take text with a

ragged right margin, like this,

Call me Ishmael.

Some years ago,

never mind how long precisely,

318 Chapter 6 Dynamic Programming

having little or no money in my purse,

and nothing particular to interest me on shore,

I thought I would sail about a little

and see the watery part of the world.

and turn it into text whose right margin is as “even” as possible, like this.

Call me Ishmael. Some years ago, never

mind how long precisely, having little

or no money in my purse, and nothing

particular to interest me on shore, I

thought I would sail about a little

and see the watery part of the world.

To make this precise enough for us to start thinking about how to

write a pretty-printer for text, we need to figure out what it means for the

right margins to be “even.” So suppose our text consists of a sequence of

words, W = {w1, w2, . . . , wn}, where wi consists of ci characters. We have

a maximum line length of L. We will assume we have a fixed-width font

and ignore issues of punctuation or hyphenation.

A formatting of W consists of a partition of the words in W into lines.

In the words assigned to a single line, there should be a space after each

word except the last; and so if wj , wj+1, . . . , wk are assigned to one line,

then we should have
⎡

⎣

k−1
∑

i=j

(ci + 1)

⎤

⎦ + ck ≤ L.

We will call an assignment of words to a line valid if it satisfies this

inequality. The difference between the left-hand side and the right-hand

side will be called the slack of the line—that is, the number of spaces left

at the right margin.

Give an efficient algorithm to find a partition of a set of words W

into valid lines, so that the sum of the squares of the slacks of all lines

(including the last line) is minimized.

7. As a solved exercise in Chapter 5, we gave an algorithm with O(n log n)

running time for the following problem. We’re looking at the price of a

given stock over n consecutive days, numbered i = 1, 2, . . . , n. For each

day i, we have a price p(i) per share for the stock on that day. (We’ll

assume for simplicity that the price was fixed during each day.) We’d like

to know: How should we choose a day i on which to buy the stock and a

later day j > i on which to sell it, if we want to maximize the profit per

Exercises 319

share, p(j) − p(i)? (If there is no way to make money during the n days, we

should conclude this instead.)

In the solved exercise, we showed how to find the optimal pair of

days i and j in time O(n log n). But, in fact, it’s possible to do better than

this. Show how to find the optimal numbers i and j in time O(n).

8. The residents of the underground city of Zion defend themselves through

a combination of kung fu, heavy artillery, and efficient algorithms. Re-

cently they have become interested in automated methods that can help

fend off attacks by swarms of robots.

Here’s what one of these robot attacks looks like.

. A swarm of robots arrives over the course of n seconds; in the ith

second, xi robots arrive. Based on remote sensing data, you know

this sequence x1, x2, . . . , xn in advance.

. You have at your disposal an electromagnetic pulse (EMP), which can

destroy some of the robots as they arrive; the EMP’s power depends

on how long it’s been allowed to charge up. To make this precise,

there is a function f (·) so that if j seconds have passed since the EMP

was last used, then it is capable of destroying up to f (j) robots.

. So specifically, if it is used in the kth second, and it has been j seconds

since it was previously used, then it will destroy min(xk , f (j)) robots.

(After this use, it will be completely drained.)

. We will also assume that the EMP starts off completely drained, so

if it is used for the first time in the jth second, then it is capable of

destroying up to f (j) robots.

The problem. Given the data on robot arrivals x1, x2, . . . , xn, and given the

recharging function f (·), choose the points in time at which you’re going

to activate the EMP so as to destroy as many robots as possible.

Example. Suppose n = 4, and the values of xi and f (i) are given by the

following table.

i 1 2 3 4

xi 1 10 10 1

f (i) 1 2 4 8

The best solution would be to activate the EMP in the 3rd and the 4th

seconds. In the 3rd second, the EMP has gotten to charge for 3 seconds,

and so it destroys min(10, 4) = 4 robots; In the 4th second, the EMP has only

gotten to charge for 1 second since its last use, and it destroysmin(1, 1) = 1

robot. This is a total of 5.

320 Chapter 6 Dynamic Programming

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

Schedule-EMP(x1, . . . , xn)

Let j be the smallest number for which f (j) ≥ xn

(If no such j exists then set j = n)

Activate the EMP in the nth second

If n − j ≥ 1 then

Continue recursively on the input x1, . . . , xn−j

(i.e., invoke Schedule-EMP(x1, . . . , xn−j))

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an efficient algorithm that takes the data on robot arrivals

x1, x2, . . . , xn, and the recharging function f (·), and returns the maxi-

mum number of robots that can be destroyed by a sequence of EMP

activations.

9. You’re helping to run a high-performance computing system capable of

processing several terabytes of data per day. For each of n days, you’re

presented with a quantity of data; on day i, you’re presented with xi

terabytes. For each terabyte you process, you receive a fixed revenue,

but any unprocessed data becomes unavailable at the end of the day (i.e.,

you can’t work on it in any future day).

You can’t always process everything each day because you’re con-

strained by the capabilities of your computing system, which can only

process a fixed number of terabytes in a given day. In fact, it’s running

some one-of-a-kind software that, while very sophisticated, is not totally

reliable, and so the amount of data you can process goes down with each

day that passes since the most recent reboot of the system. On the first

day after a reboot, you can process s1 terabytes, on the second day after

a reboot, you can process s2 terabytes, and so on, up to sn; we assume

s1 > s2 > s3 > . . . > sn > 0. (Of course, on day i you can only process up to xi

terabytes, regardless of how fast your system is.) To get the system back

to peak performance, you can choose to reboot it; but on any day you

choose to reboot the system, you can’t process any data at all.

The problem. Given the amounts of available data x1, x2, . . . , xn for the

next n days, and given the profile of your system as expressed by

s1, s2, . . . , sn (and starting froma freshly rebooted systemonday 1), choose

Exercises 321

the days on which you’re going to reboot so as to maximize the total

amount of data you process.

Example. Suppose n = 4, and the values of xi and si are given by the

following table.

Day 1 Day 2 Day 3 Day 4

x 10 1 7 7

s 8 4 2 1

The best solution would be to reboot on day 2 only; this way, you process

8 terabytes on day 1, then 0 on day 2, then 7 on day 3, then 4 on day

4, for a total of 19. (Note that if you didn’t reboot at all, you’d process

8 + 1+ 2 + 1= 12; and other rebooting strategies give you less than 19 as

well.)

(a) Give an example of an instance with the following properties.

– There is a “surplus” of data in the sense that xi > s1 for every i.

– The optimal solution reboots the system at least twice.

In addition to the example, you should say what the optimal solution

is. You do not need to provide a proof that it is optimal.

(b) Give an efficient algorithm that takes values for x1, x2, . . . , xn and

s1, s2, . . . , sn and returns the total number of terabytes processed by

an optimal solution.

10. You’re trying to run a large computing job in which you need to simulate

a physical system for as many discrete steps as you can. The lab you’re

working in has two large supercomputers (which we’ll call A and B) which

are capable of processing this job. However, you’re not one of the high-

priority users of these supercomputers, so at any given point in time,

you’re only able to use as many spare cycles as these machines have

available.

Here’s the problem you face. Your job can only run on one of the

machines in any given minute. Over each of the next n minutes, you have

a “profile” of how much processing power is available on each machine.

In minute i, you would be able to run ai > 0 steps of the simulation if

your job is on machine A, and bi > 0 steps of the simulation if your job

is on machine B. You also have the ability to move your job from one

machine to the other; but doing this costs you a minute of time in which

no processing is done on your job.

So, given a sequence of n minutes, a plan is specified by a choice

of A, B, or “move” for each minute, with the property that choices A and

322 Chapter 6 Dynamic Programming

B cannot appear in consecutive minutes. For example, if your job is on

machine A in minute i, and you want to switch to machine B, then your

choice forminute i + 1must be move, and then your choice forminute i + 2

can be B. The value of a plan is the total number of steps that youmanage

to execute over the n minutes: so it’s the sum of ai over all minutes in

which the job is on A, plus the sum of bi over all minutes in which the job

is on B.

The problem. Given values a1, a2, . . . , an and b1, b2, . . . , bn, find a plan of

maximum value. (Such a strategy will be called optimal .) Note that your

plan can start with either of the machines A or B in minute 1.

Example. Suppose n = 4, and the values of ai and bi are given by the

following table.

Minute 1 Minute 2 Minute 3 Minute 4

A 10 1 1 10

B 5 1 20 20

Then the plan of maximum value would be to choose A for minute 1,

then move for minute 2, and then B for minutes 3 and 4. The value of this

plan would be 10 + 0 + 20 + 20 = 50.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

In minute 1, choose the machine achieving the larger of a1, b1

Set i = 2

While i ≤ n

What was the choice in minute i − 1?

If A:

If bi+1 > ai + ai+1 then

Choose move in minute i and B in minute i + 1

Proceed to iteration i + 2

Else

Choose A in minute i

Proceed to iteration i + 1

Endif

If B: behave as above with roles of A and B reversed

EndWhile

Exercises 323

In your example, say what the correct answer is and also what the

algorithm above finds.

(b) Give an efficient algorithm that takes values for a1, a2, . . . , an and

b1, b2, . . . , bn and returns the value of an optimal plan.

11. Suppose you’re consulting for a company that manufactures PC equip-

ment and ships it to distributors all over the country. For each of the

next n weeks, they have a projected supply si of equipment (measured in

pounds), which has to be shipped by an air freight carrier.

Eachweek’s supply can be carried by one of two air freight companies,

A or B.

. Company A charges a fixed rate r per pound (so it costs r · si to ship

a week’s supply si).

. Company B makes contracts for a fixed amount c per week, indepen-

dent of the weight. However, contracts with company Bmust bemade

in blocks of four consecutive weeks at a time.

A schedule, for the PC company, is a choice of air freight company

(A or B) for each of the n weeks, with the restriction that company B,

whenever it is chosen, must be chosen for blocks of four contiguous

weeks at a time. The cost of the schedule is the total amount paid to

company A and B, according to the description above.

Give a polynomial-time algorithm that takes a sequence of supply

values s1, s2, . . . , sn and returns a schedule of minimum cost.

Example. Suppose r = 1, c = 10, and the sequence of values is

11, 9, 9, 12, 12, 12, 12, 9, 9, 11.

Then the optimal schedule would be to choose company A for the first

three weeks, then company B for a block of four consecutive weeks, and

then company A for the final three weeks.

12. Suppose we want to replicate a file over a collection of n servers, labeled

S1, S2, . . . , Sn. To place a copy of the file at server Si results in a placement

cost of ci, for an integer ci > 0.

Now, if a user requests the file from server Si, and no copy of the file is

present at Si, then the servers Si+1, Si+2, Si+3 . . . are searched in order until

a copy of the file is finally found, say at server Sj, where j > i. This results

in an access cost of j − i. (Note that the lower-indexed servers Si−1, Si−2, . . .

are not consulted in this search.) The access cost is 0 if Si holds a copy of

the file. We will require that a copy of the file be placed at server Sn, so

that all such searches will terminate, at the latest, at Sn.

324 Chapter 6 Dynamic Programming

We’d like to place copies of the files at the servers so as to minimize

the sum of placement and access costs. Formally, we say that a configu-

ration is a choice, for each server Si with i = 1, 2, . . . , n − 1, of whether to

place a copy of the file at Si or not. (Recall that a copy is always placed at

Sn.) The total cost of a configuration is the sum of all placement costs for

servers with a copy of the file, plus the sum of all access costs associated

with all n servers.

Give a polynomial-time algorithm to find a configuration ofminimum

total cost.

13. The problem of searching for cycles in graphs arises naturally in financial

trading applications. Consider a firm that trades shares in n different

companies. For each pair i �= j, they maintain a trade ratio rij, meaning

that one share of i trades for rij shares of j. Here we allow the rate r to be

fractional; that is, rij =
2
3 means that you can trade three shares of i to get

two shares of j.

A trading cycle for a sequence of shares i1, i2, . . . , ik consists of

successively trading shares in company i1 for shares in company i2, then

shares in company i2 for shares i3, and so on, finally trading shares in ik

back to shares in company i1. After such a sequence of trades, one ends up

with shares in the same company i1 that one starts with. Trading around a

cycle is usually a bad idea, as you tend to end up with fewer shares than

you started with. But occasionally, for short periods of time, there are

opportunities to increase shares. We will call such a cycle an opportunity

cycle, if trading along the cycle increases the number of shares. This

happens exactly if the product of the ratios along the cycle is above 1. In

analyzing the state of the market, a firm engaged in trading would like

to know if there are any opportunity cycles.

Give a polynomial-time algorithm that finds such an opportunity

cycle, if one exists.

14. A large collection ofmobile wireless devices can naturally form a network

in which the devices are the nodes, and two devices x and y are connected

by an edge if they are able to directly communicate with each other (e.g.,

by a short-range radio link). Such a network of wireless devices is a highly

dynamic object, in which edges can appear and disappear over time as

the devices move around. For instance, an edge (x, y) might disappear as x

and y move far apart from each other and lose the ability to communicate

directly.

In a network that changes over time, it is natural to look for efficient

ways of maintaining a path between certain designated nodes. There are

Exercises 325

two opposing concerns inmaintaining such a path: wewant paths that are

short, but we also do not want to have to change the path frequently as the

network structure changes. (That is, we’d like a single path to continue

working, if possible, even as the network gains and loses edges.) Here is

a way we might model this problem.

Suppose we have a set of mobile nodes V, and at a particular point in

time there is a set E0 of edges among these nodes. As the nodes move, the

set of edges changes from E0 to E1, then to E2, then to E3, and so on, to an

edge set Eb. For i = 0, 1, 2, . . . , b, let Gi denote the graph (V , Ei). So if wewere

to watch the structure of the network on the nodes V as a “time lapse,” it

would look precisely like the sequence of graphs G0, G1, G2, . . . , Gb−1, Gb.

We will assume that each of these graphs Gi is connected.

Now consider two particular nodes s, t ∈ V. For an s-t path P in one

of the graphs Gi, we define the length of P to be simply the number of

edges in P, and we denote this ℓ(P). Our goal is to produce a sequence of

paths P0, P1, . . . , Pb so that for each i, Pi is an s-t path in Gi. We want the

paths to be relatively short. We also do not want there to be too many

changes—points at which the identity of the path switches. Formally, we

define changes(P0, P1, . . . , Pb) to be the number of indices i (0 ≤ i ≤ b − 1)

for which Pi �= Pi+1.

Fix a constant K > 0. We define the cost of the sequence of paths

P0, P1, . . . , Pb to be

cost(P0, P1, . . . , Pb) =

b
∑

i=0

ℓ(Pi) + K · changes(P0, P1, . . . , Pb).

(a) Suppose it is possible to choose a single path P that is an s-t path in

each of the graphs G0, G1, . . . , Gb. Give a polynomial-time algorithm

to find the shortest such path.

(b) Give a polynomial-time algorithm to find a sequence of paths

P0, P1, . . . , Pb of minimum cost, where Pi is an s-t path in Gi for

i = 0, 1, . . . , b.

15. Onmost clear days, a group of your friends in the AstronomyDepartment

gets together to plan out the astronomical events they’re going to try

observing that night. We’ll make the following assumptions about the

events.

. There are n events, which for simplicity we’ll assume occur in se-

quence separated by exactly one minute each. Thus event j occurs

at minute j; if they don’t observe this event at exactly minute j, then

they miss out on it.

326 Chapter 6 Dynamic Programming

. The sky ismapped according to a one-dimensional coordinate system

(measured in degrees from some central baseline); event j will be

taking place at coordinate dj, for some integer value dj. The telescope

starts at coordinate 0 at minute 0.

. The last event, n, is much more important than the others; so it is

required that they observe event n.

The Astronomy Department operates a large telescope that can be

used for viewing these events. Because it is such a complex instrument, it

can only move at a rate of one degree per minute. Thus they do not expect

to be able to observe all n events; they just want to observe as many as

possible, limited by the operation of the telescope and the requirement

that event n must be observed.

We say that a subset S of the events is viewable if it is possible to

observe each event j ∈ S at its appointed time j, and the telescope has

adequate time (moving at itsmaximumof one degree perminute) tomove

between consecutive events in S.

The problem. Given the coordinates of each of the n events, find a

viewable subset of maximum size, subject to the requirement that it

should contain event n. Such a solution will be called optimal .

Example. Suppose the one-dimensional coordinates of the events are as

shown here.

Event 1 2 3 4 5 6 7 8 9

Coordinate 1 –4 –1 4 5 –4 6 7 –2

Then the optimal solution is to observe events 1, 3, 6, 9. Note that the

telescope has time to move from one event in this set to the next, even

moving at one degree per minute.

(a) Show that the following algorithm does not correctly solve this

problem, by giving an instance onwhich it does not return the correct

answer.

Mark all events j with |dn − dj| > n − j as illegal (as

observing them would prevent you from observing event n)

Mark all other events as legal

Initialize current position to coordinate 0 at minute 0

While not at end of event sequence

Find the earliest legal event j that can be reached without

exceeding the maximum movement rate of the telescope

Add j to the set S

Exercises 327

A

B

C

D

A should call B before D.

Figure 6.30 A hierarchy with

four people. The fastest

broadcast scheme is for A

to call B in the first round.

In the second round, A calls

D and B calls C. If A were to

call D first, then C could not

learn the news until the third

round.

Update current position to be coord.~dj at minute j

Endwhile

Output the set S

In your example, say what the correct answer is and also what

the algorithm above finds.

(b) Give an efficient algorithm that takes values for the coordinates

d1, d2, . . . , dn of the events and returns the size of an optimal solution.

16. There are many sunny days in Ithaca, New York; but this year, as it

happens, the spring ROTC picnic at Cornell has fallen on a rainy day. The

ranking officer decides to postpone the picnic and must notify everyone

by phone. Here is the mechanism she uses to do this.

Each ROTC person on campus except the ranking officer reports to

a unique superior officer . Thus the reporting hierarchy can be described

by a tree T , rooted at the ranking officer, in which each other node v

has a parent node u equal to his or her superior officer. Conversely, we

will call v a direct subordinate of u. See Figure 6.30, in which A is the

ranking officer, B and D are the direct subordinates of A, and C is the

direct subordinate of B.

To notify everyone of the postponement, the ranking officer first

calls each of her direct subordinates, one at a time. As soon as each

subordinate gets the phone call, he or she must notify each of his or

her direct subordinates, one at a time. The process continues this way

until everyone has been notified. Note that each person in this process

can only call direct subordinates on the phone; for example, in Figure

6.30, A would not be allowed to call C.

We can picture this process as being divided into rounds. In one

round, each person who has already learned of the postponement can

call one of his or her direct subordinates on the phone. The number of

rounds it takes for everyone to be notified depends on the sequence in

which each person calls their direct subordinates. For example, in Figure

6.30, it will take only two rounds if A starts by calling B, but it will take

three rounds if A starts by calling D.

Give an efficient algorithm that determines the minimum number of

rounds needed for everyone to be notified, and outputs a sequence of

phone calls that achieves this minimum number of rounds.

17. Your friends have been studying the closing prices of tech stocks, looking

for interesting patterns. They’ve defined something called a rising trend ,

as follows.

328 Chapter 6 Dynamic Programming

They have the closing price for a given stock recorded for n days in

succession; let these prices be denoted P[1], P[2], . . . , P[n]. A rising trend

in these prices is a subsequence of the prices P[i1], P[i2], . . . , P[ik], for days

i1 < i2 < . . . < ik, so that

. i1 = 1, and

. P[ij]< P[ij+1] for each j = 1, 2, . . . , k − 1.

Thus a rising trend is a subsequence of the days—beginning on the first

day and not necessarily contiguous—so that the price strictly increases

over the days in this subsequence.

They are interested in finding the longest rising trend in a given

sequence of prices.

Example. Suppose n = 7, and the sequence of prices is

10, 1, 2, 11, 3, 4, 12.

Then the longest rising trend is given by the prices on days 1, 4, and 7.

Note that days 2, 3, 5, and 6 consist of increasing prices; but because this

subsequence does not begin on day 1, it does not fit the definition of a

rising trend.

(a) Show that the following algorithm does not correctly return the

length of the longest rising trend, by giving an instance on which

it fails to return the correct answer.

Define i = 1

L = 1

For j = 2 to n

If P[j]> P[i] then

Set i = j.

Add 1 to L

Endif

Endfor

In your example, give the actual length of the longest rising trend,

and say what the algorithm above returns.

(b) Give an efficient algorithm that takes a sequence of prices P[1],

P[2], . . . , P[n] and returns the length of the longest rising trend.

18. Consider the sequence alignment problem over a four-letter alphabet

{z1, z2, z3, z4}, with a given gap cost and given mismatch costs. Assume

that each of these parameters is a positive integer.

Exercises 329

Suppose you are given two strings A = a1a2
. . . am and B = b1b2

. . . bn

and a proposed alignment between them. Give an O(mn) algorithm to

decide whether this alignment is the unique minimum-cost alignment

between A and B.

19. You’re consulting for a group of people (who would prefer not to be

mentioned here by name) whose jobs consist ofmonitoring and analyzing

electronic signals coming from ships in coastal Atlantic waters. Theywant

a fast algorithm for a basic primitive that arises frequently: “untangling”

a superposition of two known signals. Specifically, they’re picturing a

situation in which each of two ships is emitting a short sequence of 0s

and 1s over and over, and they want to make sure that the signal they’re

hearing is simply an interleaving of these two emissions, with nothing

extra added in.

This describes thewhole problem; we canmake it a littlemore explicit

as follows. Given a string x consisting of 0s and 1s, we write xk to denote k

copies of x concatenated together. We say that a string x′ is a repetition

of x if it is a prefix of xk for some number k. So x′ = 10110110110 is a repetition

of x = 101.

We say that a string s is an interleaving of x and y if its symbols can be

partitioned into two (not necessarily contiguous) subsequences s′ and s′′,

so that s′ is a repetition of x and s′′ is a repetition of y. (So each symbol in

s must belong to exactly one of s′ or s′′.) For example, if x = 101 and y = 00,

then s = 100010101 is an interleaving of x and y, since characters 1,2,5,7,8,9

form 101101—a repetition of x—and the remaining characters 3,4,6 form

000—a repetition of y.

In terms of our application, x and y are the repeating sequences from

the two ships, and s is the signal we’re listening to: We want to make sure

s “unravels” into simple repetitions of x and y. Give an efficient algorithm

that takes strings s, x, and y and decides if s is an interleaving of x and y.

20. Suppose it’s nearing the end of the semester and you’re taking n courses,

each with a final project that still has to be done. Each project will be

graded on the following scale: It will be assigned an integer number on

a scale of 1 to g > 1, higher numbers being better grades. Your goal, of

course, is to maximize your average grade on the n projects.

You have a total of H > n hours in which to work on the n projects

cumulatively, and you want to decide how to divide up this time. For

simplicity, assume H is a positive integer, and you’ll spend an integer

number of hours on each project. To figure out how best to divide up

your time, you’ve come upwith a set of functions {fi : i = 1, 2, . . . , n} (rough

330 Chapter 6 Dynamic Programming

estimates, of course) for each of your n courses; if you spend h ≤ H hours

on the project for course i, you’ll get a grade of fi(h). (You may assume

that the functions fi are nondecreasing: if h < h′, then fi(h) ≤ fi(h
′).)

So the problem is: Given these functions {fi}, decide how many hours

to spend on each project (in integer values only) so that your average

grade, as computed according to the fi, is as large as possible. In order

to be efficient, the running time of your algorithm should be polynomial

in n, g, and H; none of these quantities should appear as an exponent in

your running time.

21. Some time back, you helped a group of friends who were doing sim-

ulations for a computation-intensive investment company, and they’ve

come back to you with a new problem. They’re looking at n consecutive

days of a given stock, at some point in the past. The days are numbered

i = 1, 2, . . . , n; for each day i, they have a price p(i) per share for the stock

on that day.

For certain (possibly large) values of k, they want to study what they

call k-shot strategies. A k-shot strategy is a collection of m pairs of days

(b1, s1), . . . , (bm, sm), where 0 ≤ m ≤ k and

1≤ b1 < s1 < b2 < s2
. . . < bm < sm ≤ n.

We view these as a set of up to k nonoverlapping intervals, during each

of which the investors buy 1,000 shares of the stock (on day bi) and then

sell it (on day si). The return of a given k-shot strategy is simply the profit

obtained from the m buy-sell transactions, namely,

1,000

m
∑

i=1

p(si) − p(bi).

The investors want to assess the value of k-shot strategies by running

simulations on their n-day trace of the stock price. Your goal is to design

an efficient algorithm that determines, given the sequence of prices, the k-

shot strategy with themaximumpossible return. Since k may be relatively

large in these simulations, your running time should be polynomial in

both n and k; it should not contain k in the exponent.

22. To assess how “well-connected” two nodes in a directed graph are, one

can not only look at the length of the shortest path between them, but

can also count the number of shortest paths.

This turns out to be a problem that can be solved efficiently, subject

to some restrictions on the edge costs. Suppose we are given a directed

graph G = (V , E), with costs on the edges; the costs may be positive or

Exercises 331

negative, but every cycle in the graph has strictly positive cost. We are

also given two nodes v, w ∈ V. Give an efficient algorithm that computes

the number of shortest v-w paths in G. (The algorithm should not list all

the paths; just the number suffices.)

23. Suppose you are given a directed graph G = (V , E) with costs on the edges

ce for e ∈ E and a sink t (costs may be negative). Assume that you also have

finite values d(v) for v ∈ V. Someone claims that, for each node v ∈ V, the

quantity d(v) is the cost of the minimum-cost path from node v to the

sink t.

(a) Give a linear-time algorithm (time O(m) if the graph has m edges) that

verifies whether this claim is correct.

(b) Assume that the distances are correct, and d(v) is finite for all v ∈ V.

Now you need to compute distances to a different sink t′. Give an

O(m log n) algorithm for computing distances d′(v) for all nodes v ∈ V

to the sink node t′. (Hint: It is useful to consider a new cost function

defined as follows: for edge e = (v, w), let c′
e = ce − d(v) + d(w). Is there

a relation between costs of paths for the two different costs c and c′?)

24. Gerrymandering is the practice of carving up electoral districts in very

careful ways so as to lead to outcomes that favor a particular political

party. Recent court challenges to the practice have argued that through

this calculated redistricting, large numbers of voters are being effectively

(and intentionally) disenfranchised.

Computers, it turns out, have been implicated as the source of some

of the “villainy” in the news coverage on this topic: Thanks to powerful

software, gerrymandering has changed from an activity carried out by a

bunch of people with maps, pencil, and paper into the industrial-strength

process that it is today.Why is gerrymandering a computational problem?

There are database issues involved in tracking voter demographics down

to the level of individual streets and houses; and there are algorithmic

issues involved in grouping voters into districts. Let’s think a bit about

what these latter issues look like.

Suppose we have a set of n precincts P1, P2, . . . , Pn, each containing

m registered voters. We’re supposed to divide these precincts into two

districts, each consisting of n/2 of the precincts. Now, for each precinct,

we have information on how many voters are registered to each of two

political parties. (Suppose, for simplicity, that every voter is registered

to one of these two.) We’ll say that the set of precincts is susceptible to

gerrymandering if it is possible to perform the division into two districts

in such a way that the same party holds a majority in both districts.

332 Chapter 6 Dynamic Programming

Give an algorithm to determine whether a given set of precincts

is susceptible to gerrymandering; the running time of your algorithm

should be polynomial in n and m.

Example. Suppose we have n = 4 precincts, and the following information

on registered voters.

Precinct 1 2 3 4

Number registered for party A 55 43 60 47

Number registered for party B 45 57 40 53

This set of precincts is susceptible since, if we grouped precincts 1

and 4 into one district, and precincts 2 and 3 into the other, then party

A would have a majority in both districts. (Presumably, the “we” who are

doing the grouping here are members of party A.) This example is a quick

illustration of the basic unfairness in gerrymandering: Although party A

holds only a slim majority in the overall population (205 to 195), it ends

up with a majority in not one but both districts.

25. Consider the problem faced by a stockbroker trying to sell a large number

of shares of stock in a company whose stock price has been steadily

falling in value. It is always hard to predict the right moment to sell stock,

but owning a lot of shares in a single company adds an extra complication:

the mere act of selling many shares in a single day will have an adverse

effect on the price.

Since future market prices, and the effect of large sales on these

prices, are very hard to predict, brokerage firms usemodels of themarket

to help them make such decisions. In this problem, we will consider the

following simple model. Suppose we need to sell x shares of stock in a

company, and suppose that we have an accurate model of the market:

it predicts that the stock price will take the values p1, p2, . . . , pn over the

next n days. Moreover, there is a function f (·) that predicts the effect

of large sales: if we sell y shares on a single day, it will permanently

decrease the price by f (y) from that day onward. So, if we sell y1 shares

on day 1, we obtain a price per share of p1 − f (y1), for a total income of

y1 · (p1 − f (y1)). Having sold y1 shares on day 1, we can then sell y2 shares

on day 2 for a price per share of p2 − f (y1) − f (y2); this yields an additional

income of y2 · (p2 − f (y1) − f (y2)). This process continues over all n days.

(Note, as in our calculation for day 2, that the decreases from earlier days

are absorbed into the prices for all later days.)

Design an efficient algorithm that takes the prices p1, . . . , pn and the

function f (·) (written as a list of values f (1), f (2), . . . , f (x)) and determines

Exercises 333

the best way to sell x shares by day n. In otherwords, find natural numbers

y1, y2, . . . , yn so that x = y1 + . . . + yn, and selling yi shares on day i for

i = 1, 2, . . . , n maximizes the total income achievable. You should assume

that the share value pi is monotone decreasing, and f (·) is monotone

increasing; that is, selling a larger number of shares causes a larger

drop in the price. Your algorithm’s running time can have a polynomial

dependence on n (the number of days), x (the number of shares), and p1

(the peak price of the stock).

Example Consider the case when n = 3; the prices for the three days are

90, 80, 40; and f (y) = 1 for y ≤ 40,000 and f (y) = 20 for y > 40, 000. Assume

you start with x = 100, 000 shares. Selling all of them on day 1 would yield

a price of 70 per share, for a total income of 7,000,000. On the other hand,

selling 40,000 shares on day 1 yields a price of 89 per share, and selling

the remaining 60,000 shares on day 2 results in a price of 59 per share,

for a total income of 7,100,000.

26. Consider the following inventory problem. You are running a company

that sells some large product (let’s assume you sell trucks), and predic-

tions tell you the quantity of sales to expect over the next n months. Let

di denote the number of sales you expect in month i. We’ll assume that

all sales happen at the beginning of the month, and trucks that are not

sold are stored until the beginning of the next month. You can store at

most S trucks, and it costs C to store a single truck for a month. You

receive shipments of trucks by placing orders for them, and there is a

fixed ordering fee of K each time you place an order (regardless of the

number of trucks you order). You start out with no trucks. The problem

is to design an algorithm that decides how to place orders so that you

satisfy all the demands {di}, and minimize the costs. In summary:

. There are two parts to the cost: (1) storage—it costs C for every truck

on hand that is not needed that month; (2) ordering fees—it costs K

for every order placed.

. In each month you need enough trucks to satisfy the demand di,

but the number left over after satisfying the demand for the month

should not exceed the inventory limit S.

Give an algorithm that solves this problem in time that is polynomial in

n and S.

27. The owners of an independently operated gas station are faced with the

following situation. They have a large underground tank in which they

store gas; the tank can hold up to L gallons at one time. Ordering gas is

quite expensive, so they want to order relatively rarely. For each order,

334 Chapter 6 Dynamic Programming

they need to pay a fixed price P for delivery in addition to the cost of the

gas ordered. However, it costs c to store a gallon of gas for an extra day,

so ordering too much ahead increases the storage cost.

They are planning to close for a week in the winter, and they want

their tank to be empty by the time they close. Luckily, based on years of

experience, they have accurate projections for how much gas they will

need each day until this point in time. Assume that there are n days left

until they close, and they need gi gallons of gas for each of the days

i = 1, . . . , n. Assume that the tank is empty at the end of day 0. Give an

algorithm to decide on which days they should place orders, and how

much to order so as to minimize their total cost.

28. Recall the scheduling problem from Section 4.2 in which we sought to

minimize the maximum lateness. There are n jobs, each with a deadline

di and a required processing time ti, and all jobs are available to be

scheduled starting at time s. For a job i to be done, it needs to be assigned

a period from si ≥ s to fi = si + ti, and different jobs should be assigned

nonoverlapping intervals. As usual, such an assignment of times will be

called a schedule.

In this problem, we consider the same setup, but want to optimize a

different objective. In particular, we consider the case in which each job

must either be done by its deadline or not at all. We’ll say that a subset J of

the jobs is schedulable if there is a schedule for the jobs in J so that each

of them finishes by its deadline. Your problem is to select a schedulable

subset of maximum possible size and give a schedule for this subset that

allows each job to finish by its deadline.

(a) Prove that there is an optimal solution J (i.e., a schedulable set of

maximum size) in which the jobs in J are scheduled in increasing

order of their deadlines.

(b) Assume that all deadlines di and required times ti are integers. Give

an algorithm to find an optimal solution. Your algorithm should

run in time polynomial in the number of jobs n, and the maximum

deadline D = maxi di.

29. Let G = (V , E) be a graph with n nodes in which each pair of nodes is

joined by an edge. There is a positive weight wij on each edge (i, j); and

we will assume these weights satisfy the triangle inequality wik ≤ wij + wjk.

For a subset V ′ ⊆ V, we will use G[V ′] to denote the subgraph (with edge

weights) induced on the nodes in V ′.

We are given a set X ⊆ V of k terminals that must be connected by

edges. We say that a Steiner tree on X is a set Z so that X ⊆ Z ⊆ V, together

Notes and Further Reading 335

with a spanning subtree T of G[Z]. The weight of the Steiner tree is the

weight of the tree T .

Show that there is function f (·) and a polynomial function p(·) so that

the problem of finding a minimum-weight Steiner tree on X can be solved

in time O(f (k) · p(n)).

Notes and Further Reading

Richard Bellman is credited with pioneering the systematic study of dynamic

programming (Bellman 1957); the algorithm in this chapter for segmented least

squares is based on Bellman’s work from this early period (Bellman 1961).

Dynamic programming has since grown into a technique that is widely used

across computer science, operations research, control theory, and a number

of other areas. Much of the recent work on this topic has been concerned with

stochastic dynamic programming: Whereas our problem formulations tended

to tacitly assume that all input is known at the outset, many problems in

scheduling, production and inventory planning, and other domains involve

uncertainty, and dynamic programming algorithms for these problems encode

this uncertainty using a probabilistic formulation. The book by Ross (1983)

provides an introduction to stochastic dynamic programming.

Many extensions and variations of the Knapsack Problem have been

studied in the area of combinatorial optimization. As we discussed in the

chapter, the pseudo-polynomial bound arising from dynamic programming

can become prohibitive when the input numbers get large; in these cases,

dynamic programming is often combined with other heuristics to solve large

instances of Knapsack Problems in practice. The book by Martello and Toth

(1990) is devoted to computational approaches to versions of the Knapsack

Problem.

Dynamic programming emerged as a basic technique in computational bi-

ology in the early 1970s, in a flurry of activity on the problem of sequence

comparison. Sankoff (2000) gives an interesting historical account of the early

work in this period. The books by Waterman (1995) and Gusfield (1997) pro-

vide extensive coverage of sequence alignment algorithms (as well as many

related algorithms in computational biology); Mathews and Zuker (2004) dis-

cuss further approaches to the problem of RNA secondary structure prediction.

The space-efficient algorithm for sequence alignment is due to Hirschberg

(1975).

The algorithm for the Shortest-Path Problem described in this chapter is

based originally on the work of Bellman (1958) and Ford (1956). Many op-

timizations, motivated both by theoretical and experimental considerations,

336 Chapter 6 Dynamic Programming

have been added to this basic approach to shortest paths; a Web site main-

tained by Andrew Goldberg contains state-of-the-art code that he has de-

veloped for this problem (among a number of others), based on work by

Cherkassky, Goldberg and Radzik (1994). The applications of shortest-path

methods to Internet routing, and the trade-offs among the different algorithms

for networking applications, are covered in books by Bertsekas and Gallager

(1992), Keshav (1997), and Stewart (1998).

Notes on the Exercises Exercise 5 is based on discussions with Lillian Lee;

Exercise 6 is based on a result of Donald Knuth; Exercise 25 is based on results

of Dimitris Bertsimas and Andrew Lo; and Exercise 29 is based on a result of

S. Dreyfus and R. Wagner.

